We report a new measurement of the differential cross section for π−p→π0n from pπ=649 to 752 MeV/c, which is around the opening of the η channel (685 MeV/c). Our data support the main features of the π−p charge-exchange differential cross sections generated by the SAID πN partial-wave analysis. The opening of the η channel has a clear effect on the shape of the excitation function for dσ(π−p→π0n), which is most noticeable in the backward direction.
Differential cross section for incident pion momentum 649, 654 and 657 MeV.
Differential cross section for incident pion momentum 661, 666 and 669 MeV.
Differential cross section for incident pion momentum 673, 678 and 681 MeV.
The differential cross section for η production in reaction π−p→ηn has been measured over the full angular range at seven incident π− beam momenta from threshold to pπ−=747 MeV/c using the Crystal Ball multiphoton spectrometer. The angular distributions are S wave dominated. At 10 MeV/c above threshold, a small D-wave contribution appears that interferes with the main S wave. The total η production cross section σtot is obtained by integration of dσ/dΩ. Starting at threshold, σtot rises rapidly, as expected for S-wave-dominated production. The features of the π−p→ηn cross section are strikingly similar to those of the SU(3) flavor-related process K−p→ηΛ. Comparison of the π−p→ηn reaction is made with η photoproduction.
Total cross sections.
Differential cross section for the 4 lowest beam momenta.
Differential cross section for the 3 highest beam momenta.
Cross sections for e^+e^- -> ppbar have been measured at 10 center-of-mass energies from 2.0 to 3.07 GeV by the BESII experiment at the BEPC, and proton electromagnetic form factors in the time-like region have been determined.
Cross section and proton form factor measurements. The cross section quoted is the lowest order cross section corrected for initial and final state radiation and coulomb effects.
We present a measurement of the $\ttbar$ production cross section using $194 \mathrm{pb^{-1}}$ of CDF II data using events with a high transverse momentum electron or muon, three or more jets, and missing transverse energy. The measurement assumes 100% $t\to Wb$ branching fraction. Events consistent with $\ttbar$ decay are found by identifying jets containing heavy flavor semileptonic decays to muons. The dominant backgrounds are evaluated directly from the data. Based on 20 candidate events and an expected background of 9.5$\pm$1.1 events, we measure a production cross section of $5.3\pm3.3^{+1.3}_{-1.0} \mathrm{pb}$, in agreement with the standard model.
TTBAR production cross section.
Double-tagged interactions of photons with virtualities Q^2 between 10 GeV^2 and 200 GeV^2 are studied with the data collected by DELPHI at LEPII from 1998 to 2000, corresponding to an integrated luminosity of 550 pb^{-1}. The gam* gam* -> mu+mu- data agree with QED predictions. The cross-section of the reaction gam* gam* -> hadrons is measured and compared to the LO and NLO BFKL calculations.
Measured cross section for the process E+ E- --> E+ E- HADRONS.
Measured cross section for the process GAMMA* GAMMA* --> HADRONS.
Differential cross section for GAMMA* GAMMA* --> MU+ MU-.
A measurement is presented of elastic deeply virtual Compton scattering \gamma* p \to \gamma p made using e^+ p collision data corresponding to a luminosity of 46.5 pb^{-1}, taken with the H1 detector at HERA. The cross section is measured as a function of the photon virtuality, Q^2, the invariant mass of the \gamma* p system, W, and for the first time, differentially in the squared momentum transfer at the proton vertex, t, in the kinematic range 2 < Q^2 < 80 GeV^2, 30 < W < 140 GeV and |t| < 1 GeV^2. QCD based calculations at next-to-leading order using generalized parton distributions can describe the data, as can colour dipole model predictions.
Cross section differential in T for the 1996-1997 data sample.
Cross section differential in T for the 1999-2000 data sample.
Cross section differential in T for the combined data sample.
We present a measurement of the top quark pair (ttbar) production cross section in ppbar collisions at a center-of-mass energy of 1.96 TeV using 230 pb-1 of data collected by the DO detector at the Fermilab Tevatron Collider. We select events in the dilepton final states ee, emu and mumu based on kinematical properties consistent with ttbar events. For a top quark mass of 175 GeV, we measure a top pair production cross section sigma(ttbar) = 8.6 +3.2-2.7 (stat) +/-1.1 (syst) +/-0.6 (lumi) pb, in good agreement with the standard model prediction.
TTBAR production cross section.
We present a measurement of the top quark pair ttbar production cross section in ppbar collisions at a center-of-mass energy of 1.96 TeV using 230 pb**{-1} of data collected by the DO detector at the Fermilab Tevatron Collider. We select events with one charged lepton (electron or muon), large missing transverse energy, and at least four jets, and extract the ttbar content of the sample based on the kinematic characteristics of the events. For a top quark mass of 175 GeV, we measure sigma(ttbar) = 6.7 {+1.4-1.3} (stat) {+1.6- 1.1} (syst) +/-0.4 (lumi) pb, in good agreement with the standard model prediction.
TTBAR production cross section from the combined electron+jet and muon+jet channels.
The polarized longitudinal-transverse structure function $\sigma_{LT^\prime}$ measures the interference between real and imaginary amplitudes in pion electroproduction and can be used to probe the coupling between resonant and non-resonant processes. We report new measurements of $\sigma_{LT^\prime}$ in the $N(1440){1/2}^+$ (Roper) resonance region at $Q^2=0.40$ and 0.65 GeV$^2$ for both the $\pi^0 p$ and $\pi^+ n$ channels. The experiment was performed at Jefferson Lab with the CEBAF Large Acceptance Spectrometer (CLAS) using longitudinally polarized electrons at a beam energy of 1.515 GeV. Complete angular distributions were obtained and are compared to recent phenomenological models. The $\sigma_{LT^\prime}(\pi^+ n)$ channel shows a large sensitivity to the Roper resonance multipoles $M_{1-}$ and $S_{1-}$ and provides new constraints on models of resonance formation.
Polarized structure function of the reaction E- P --> E- PI0 P for Q**2 = 0.40 and W = 1.1 GeV.
Polarized structure function of the reaction E- P --> E- PI0 P for Q**2 = 0.40 and W = 1.14 GeV.
Polarized structure function of the reaction E- P --> E- PI0 P for Q**2 = 0.40 and W = 1.18 GeV.
Exclusive electroproduction of $\phi$ mesons has been studied in $e^\pm p$ collisions at $\sqrt{s}=318 \gev$ with the ZEUS detector at HERA using an integrated luminosity of 65.1 pb$^{-1}$. The $\gamma^*p$ cross section is presented in the kinematic range $2
Exclusive GAMMA* P --> PHI P cross section in the Q**2 range 2 to 3 GeV**2.
Exclusive GAMMA* P --> PHI P cross section in the Q**2 range 3 to 5 GeV**2.
Exclusive GAMMA* P --> PHI P cross section in the Q**2 range 5 to 9 GeV**2.