<jats:title>Abstract</jats:title> <jats:p> The existence of three distinct neutrino flavours, <jats:italic>ν</jats:italic> <jats:sub>e</jats:sub> , <jats:italic>ν</jats:italic> <jats:sub>μ</jats:sub> and <jats:italic>ν</jats:italic> <jats:sub>τ</jats:sub> , is a central tenet of the Standard Model of particle physics <jats:sup>1,2</jats:sup> . Quantum-mechanical interference can allow a neutrino of one initial flavour to be detected sometime later as a different flavour, a process called neutrino oscillation. Several anomalous observations inconsistent with this three-flavour picture have motivated the hypothesis that an additional neutrino state exists, which does not interact directly with matter, termed as ‘sterile’ neutrino, <jats:italic>ν</jats:italic> <jats:sub>s</jats:sub> (refs. <jats:sup>3–9</jats:sup> ). This includes anomalous observations from the Liquid Scintillator Neutrino Detector (LSND) <jats:sup>3</jats:sup> experiment and Mini-Booster Neutrino Experiment (MiniBooNE) <jats:sup>4,5</jats:sup> , consistent with <jats:italic>ν</jats:italic> <jats:sub>μ</jats:sub> → <jats:italic>ν</jats:italic> <jats:sub>e</jats:sub> transitions at a distance inconsistent with the three-neutrino picture. Here we use data obtained from the MicroBooNE liquid-argon time projection chamber <jats:sup>10</jats:sup> in two accelerator neutrino beams to exclude the single light sterile neutrino interpretation of the LSND and MiniBooNE anomalies at the 95% confidence level (CL). Moreover, we rule out a notable portion of the parameter space that could explain the gallium anomaly <jats:sup>6–8</jats:sup> . This is one of the first measurements to use two accelerator neutrino beams to break a degeneracy between <jats:italic>ν</jats:italic> <jats:sub>e</jats:sub> appearance and disappearance, which would otherwise weaken the sensitivity to the sterile neutrino hypothesis. We find no evidence for either <jats:italic>ν</jats:italic> <jats:sub>μ</jats:sub> → <jats:italic>ν</jats:italic> <jats:sub>e</jats:sub> flavour transitions or <jats:italic>ν</jats:italic> <jats:sub>e</jats:sub> disappearance that would indicate non-standard flavour oscillations. Our results indicate that previous anomalous observations consistent with <jats:italic>ν</jats:italic> <jats:sub>μ</jats:sub> → <jats:italic>ν</jats:italic> <jats:sub>e</jats:sub> transitions cannot be explained by introducing a single sterile neutrino state. </jats:p>
14 observation channels used in this analysis. The first 7 channels correspond to the BNB, while the last 7 channels correspond to the NuMI beam. Each set of seven channels is split by reconstructed event type as well as containment in the detector, fully contained (FC) or partially contained (PC). The seven channels in order are $\nu_e$CC FC, $\nu_e$CC PC, $\nu_\mu$CC FC, $\nu_\mu$CC PC, $\nu_\mu$CC $\pi^0$ FC, $\nu_\mu$CC $\pi^0$ PC, and NC $\pi^0$. Each channel contains 25 bins from 0 to 2500 MeV of reconstructed neutrino energy, with an additional overflow bin.
Four $\nu_e$CC observation channels, after constraints from 10 $\nu_\mu$CC and NC $\pi^0$ channels. The four channels in order are BNB $\nu_e$CC FC, BNB $\nu_e$CC PC, NuMI $\nu_e$CC FC, and NuMI $\nu_e$CC PC. Each channel contains 25 bins from 0 to 2500 MeV of reconstructed neutrino energy, with an additional overflow bin.
14 channel covariance matrix showing uncertainties and correlations between bins due to flux uncertainties, cross-section uncertainties, hadron reinteraction uncertainties, detector systematic uncertainties, Monte-Carlo statistical uncertainties, and dirt (outside cryostat) uncertainties. Data statistical uncertainties have not been included, but they can be calculated with the Combined Neyman-Pearson (CNP) method. Each channel contains 25 bins from 0 to 2500 MeV of reconstructed neutrino energy, with an additional overflow bin.
The mass of the top quark is measured using top-antitop-quark pair events with high transverse momentum top quarks. The dataset, collected with the ATLAS detector in proton--proton collisions at $\sqrt{s}=13$ TeV delivered by the Large Hadron Collider, corresponds to an integrated luminosity of 140 fb$^{-1}$. The analysis targets events in the lepton-plus-jets decay channel, with an electron or muon from a semi-leptonically decaying top quark and a hadronically decaying top quark that is sufficiently energetic to be reconstructed as a single large-radius jet. The mean of the invariant mass of the reconstructed large-radius jet provides the sensitivity to the top quark mass and is simultaneously fitted with two additional observables to reduce the impact of the systematic uncertainties. The top quark mass is measured to be $m_t = 172.95 \pm 0.53$ GeV, which is the most precise ATLAS measurement from a single channel.
Values and uncertainties for the parameters of interest in the profile likelihood fit to $\overline{m_J}$, $m_{jj}$, and $m_{tj}$ using data. The parameters of interest are the top quark mass, $m_t$, and the ratio of the measured cross-section to the Standard Model expectation of the $t\bar{t}$ cross-section, $\mu$.
Post-fit central values and uncertaintes for the nuisance parameters (including MC stat uncertainty terms) used in the profile likelihood fit to $\overline{m_J}$, $m_{jj}$, and $m_{tj}$ using data.
Covariance matrix for the profile likelihood fit to $\overline{m_J}$, $m_{jj}$, and $m_{tj}$ using data.
We present an inclusive search for anomalous production of single-photon events from neutrino interactions in the MicroBooNE experiment. The search and its signal definition are motivated by the previous observation of a low-energy excess of electromagnetic shower events from the MiniBooNE experiment. We use the Wire-Cell reconstruction framework to select a sample of inclusive single-photon final-state interactions with a final efficiency and purity of 7.0% and 40.2%, respectively. We leverage simultaneous measurements of sidebands of charged current $\nu_{\mu}$ interactions and neutral current interactions producing $\pi^{0}$ mesons to constrain signal and background predictions and reduce uncertainties. We perform a blind analysis using a dataset collected from February 2016 to July 2018, corresponding to an exposure of $6.34\times10^{20}$ protons on target from the Booster Neutrino Beam (BNB) at Fermilab. In the full signal region, we observe agreement between the data and the prediction, with a goodness-of-fit $p$-value of 0.11. We then isolate a sub-sample of these events containing no visible protons, and observe $93\pm22\text{(stat.)}\pm35\text{(syst.)}$ data events above prediction, corresponding to just above $2\sigma$ local significance, concentrated at shower energies below 600 MeV.
Fig. 2. The reconstructed shower energy. The individual signal and background event type categories added together form the unconstrained prediction.
Fig. 2. The constrained covariance matrix for the reconstructed shower energy. The matrix shows uncertainties and correlations between bins due to flux uncertainties, cross-section uncertainties, hadron reinteraction uncertainties, detector systematic uncertainties, Monte-Carlo statistical uncertainties, and dirt (outside cryostat) uncertainties. Data statistical uncertainties are not included. An example of how to add Pearson data statistical uncertainties can be found in the example code repository.
Fig. 2, Suppl. Fig. 5. The unconstrained covariance matrix for the reconstructed shower energy. The matrix shows uncertainties and correlations between bins due to flux uncertainties, cross-section uncertainties, hadron reinteraction uncertainties, detector systematic uncertainties, Monte-Carlo statistical uncertainties, and dirt (outside cryostat) uncertainties. Data statistical uncertainties are not included. An example of how to add Pearson data statistical uncertainties can be found in the example code repository.
We report results from an updated search for neutral current (NC) resonant $Δ$(1232) baryon production and subsequent $Δ$ radiative decay (NC $Δ\rightarrow N γ$). We consider events with and without final state protons; events with a proton can be compared with the kinematics of a $Δ(1232)$ baryon decay, while events without a visible proton represent a more generic phase space. In order to maximize sensitivity to each topology, we simultaneously make use of two different reconstruction paradigms, Pandora and Wire-Cell, which have complementary strengths, and select mostly orthogonal sets of events. Considering an overall scaling of the NC $Δ\rightarrow N γ$ rate as an explanation of the MiniBooNE anomaly, our data exclude this hypothesis at 94.4% CL. When we decouple the expected correlations between NC $Δ\rightarrow N γ$ events with and without final state protons, and allow independent scaling of both types of events, our data exclude explanations in which excess events have associated protons, and do not exclude explanations in which excess events have no associated protons.
The four bins correspond to WC $1\gamma Np$, WC $1\gamma 0p$, Pandora $1\gamma 1p$, and Pandora $1\gamma 0p$ predictions. Systematic uncertainties on the predictions are illustrated, and a more detailed covariance matrix is included in the Constrained Signal Channels Covariance Matrix and Signal And Constraining Channels Covariance Matrix tabs. This corresponds to Fig. 1 and Table III of the paper.
Covariance matrix showing constrained uncertainties and correlations between bins due to flux uncertainties, cross-section uncertainties, hadron reinteraction uncertainties, detector systematic uncertainties, Monte-Carlo statistical uncertainties, and dirt (outside cryostat) uncertainties. Pearson data statistical uncertainties have been included, and include small correlations due to events which can be selected by both WC and Pandora. The four bins are the WC $1\gamma Np$, WC $1\gamma 0p$, Pandora $1\gamma 1p$, and Pandora $1\gamma 0p$ channels. This corresponds to Fig. 1 and Table II of the paper.
Four constraining channels. The four channels in order are NC $\pi^0 Np$, NC $\pi^0 0p$, $\nu_\mu$CC $Np$, and $\nu_\mu$CC $0p$. Each channel contains 15 bins from 0 to 1500 MeV of reconstructed neutrino energy, with an additional overflow bin. Unconstrained and constrained systematic uncertainties on the predictions are illustrated, and a more detailed covariance matrix is included in the Signal And Constraining Channels Covariance Matrix tab. This corresponds to Fig. 6 of the Supplemental Material.
This Letter presents an investigation of low-energy electron-neutrino interactions in the Fermilab Booster Neutrino Beam by the MicroBooNE experiment, motivated by the excess of electron-neutrino-like events observed by the MiniBooNE experiment. This is the first measurement to use data from all five years of operation of the MicroBooNE experiment, corresponding to an exposure of $1.11\times 10^{21}$ protons on target, a $70\%$ increase on past results. Two samples of electron neutrino interactions without visible pions are used, one with visible protons and one without any visible protons. The MicroBooNE data show reasonable agreement with the nominal prediction, with $p$-values $\ge 26.7\%$ when the two $ν_e$ samples are combined, though the prediction exceeds the data in limited regions of phase space. The data is further compared to two empirical models that modify the predicted rate of electron-neutrino interactions in different variables in the simulation to match the unfolded MiniBooNE low energy excess. In the first model, this unfolding is performed as a function of electron neutrino energy, while the second model aims to match the observed shower energy and angle distributions of the MiniBooNE excess. This measurement excludes an electron-like interpretation of the MiniBooNE excess based on these models at $> 99\%$ CL$_\mathrm{s}$ in all kinematic variables.
Fig. 2 top figure - Distributions of MC simulation compared with data for reconstructed neutrino energy in the 1$e$N$p$0$\pi$ signal channel, along with the LEE Signal Model 1. Only bins between 0.15 GeV and 1.55 GeV are released, as statistical tests are performed within this region. The signal and background event categories are summed to form the unconstrained prediction (excluding LEE). Signal events correspond to $\nu_e$ CC events. Background events include $\nu$ with $\pi^0$ events, $\nu$ other events, and cosmic ray events. In Fig. 2, the LEE component is plotted on top of the constrained prediction (excluding LEE) for illustrative purposes. In all statistical tests (results summarized in Table I), the prediction under an LEE hypothesis corresponds to a constrained prediction including LEE. The statistical uncertainties of data use a combined Neyman-Pearson (CNP) version (Eq.(19) in https://doi.org/10.1016/j.nima.2020.163677).
Fig. 2 bottom figure - Distributions of MC simulation compared with data for reconstructed neutrino energy in the 1$e$0$p$0$\pi$ signal channel, along with the LEE Signal Model 1. Only bins between 0.15 GeV and 1.55 GeV are released, as statistical tests are performed within this region. The signal and background event categories are summed to form the unconstrained prediction (excluding LEE). Signal events correspond to $\nu_e$ CC events. Background events include $\nu$ with $\pi^0$ events, $\nu$ other events, and cosmic ray events. In Fig. 2, the LEE component is plotted on top of the constrained prediction (excluding LEE) for illustrative purposes. In all statistical tests (results summarized in Table I), the prediction under an LEE hypothesis corresponds to a constrained prediction including LEE. The statistical uncertainties of data use a combined Neyman-Pearson (CNP) version (Eq.(19) in https://doi.org/10.1016/j.nima.2020.163677).
Fig. 3 top figure - Distributions of MC simulation compared with data for reconstructed shower energy in the 1$e$N$p$0$\pi$ signal channel, along with the LEE Signal Model 2. The signal and background event categories are summed to form the unconstrained prediction (excluding LEE). Signal events correspond to $\nu_e$ CC events. Background events include $\nu$ with $\pi^0$ events, $\nu$ other events, and cosmic ray events. In Fig. 3, the LEE component is plotted on top of the constrained prediction (excluding LEE) for illustrative purposes. In all statistical tests (results summarized in Table I), the prediction under an LEE hypothesis corresponds to a constrained prediction including LEE. The statistical uncertainties of data use a combined Neyman-Pearson (CNP) version (Eq.(19) in https://doi.org/10.1016/j.nima.2020.163677).
A combination of fifteen top quark mass measurements performed by the ATLAS and CMS experiments at the LHC is presented. The data sets used correspond to an integrated luminosity of up to 5 and 20$^{-1}$ of proton-proton collisions at center-of-mass energies of 7 and 8 TeV, respectively. The combination includes measurements in top quark pair events that exploit both the semileptonic and hadronic decays of the top quark, and a measurement using events enriched in single top quark production via the electroweak $t$-channel. The combination accounts for the correlations between measurements and achieves an improvement in the total uncertainty of 31% relative to the most precise input measurement. The result is $m_\mathrm{t}$ = 172.52 $\pm$ 0.14 (stat) $\pm$ 0.30 (syst) GeV, with a total uncertainty of 0.33 GeV.
Uncertainties on the $m_{t}$ values extracted in the LHC, ATLAS, and CMS combinations arising from the categories described in the text, sorted in order of decreasing value of the combined LHC uncertainty.
Measurements of the suppression and correlations of dijets is performed using 3 $\mu$b$^{-1}$ of Xe+Xe data at $\sqrt{s_{\mathrm{NN}}} = 5.44$ TeV collected with the ATLAS detector at the LHC. Dijets with jets reconstructed using the $R=0.4$ anti-$k_t$ algorithm are measured differentially in jet $p_{\text{T}}$ over the range of 32 GeV to 398 GeV and the centrality of the collisions. Significant dijet momentum imbalance is found in the most central Xe+Xe collisions, which decreases in more peripheral collisions. Results from the measurement of per-pair normalized and absolutely normalized dijet $p_{\text{T}}$ balance are compared with previous Pb+Pb measurements at $\sqrt{s_{\mathrm{NN}}} =5.02$ TeV. The differences between the dijet suppression in Xe+Xe and Pb+Pb are further quantified by the ratio of pair nuclear-modification factors. The results are found to be consistent with those measured in Pb+Pb data when compared in classes of the same event activity and when taking into account the difference between the center-of-mass energies of the initial parton scattering process in Xe+Xe and Pb+Pb collisions. These results should provide input for a better understanding of the role of energy density, system size, path length, and fluctuations in the parton energy loss.
The centrality intervals in Xe+Xe collisions and their corresponding TAA with absolute uncertainties.
The centrality intervals in Xe+Xe and Pb+Pb collisions for matching SUM ET FCAL intervals and respective TAA values for Xe+Xe collisions.
The performance of the jet energy scale (JES) for jets with $|y| < 2.1$ evaluated as a function of pT_truth in different centrality bins. Simulated hard scatter events were overlaid onto events from a dedicated sample of minimum-bias Xe+Xe data.
Inclusive and differential measurements of the top-antitop ($t\bar{t}$) charge asymmetry $A_\text{C}^{t\bar{t}}$ and the leptonic asymmetry $A_\text{C}^{\ell\bar{\ell}}$ are presented in proton-proton collisions at $\sqrt{s} = 13$ TeV recorded by the ATLAS experiment at the CERN Large Hadron Collider. The measurement uses the complete Run 2 dataset, corresponding to an integrated luminosity of 139 fb$^{-1}$, combines data in the single-lepton and dilepton channels, and employs reconstruction techniques adapted to both the resolved and boosted topologies. A Bayesian unfolding procedure is performed to correct for detector resolution and acceptance effects. The combined inclusive $t\bar{t}$ charge asymmetry is measured to be $A_\text{C}^{t\bar{t}} = 0.0068 \pm 0.0015$, which differs from zero by 4.7 standard deviations. Differential measurements are performed as a function of the invariant mass, transverse momentum and longitudinal boost of the $t\bar{t}$ system. Both the inclusive and differential measurements are found to be compatible with the Standard Model predictions, at next-to-next-to-leading order in quantum chromodynamics perturbation theory with next-to-leading-order electroweak corrections. The measurements are interpreted in the framework of the Standard Model effective field theory, placing competitive bounds on several Wilson coefficients.
- - - - - - - - Overview of HEPData Record - - - - - - - - <br/><br/> <b>Results:</b> <ul> <li><a href="132116?version=2&table=Resultsforchargeasymmetryinclusive">$A_C^{t\bar{t}}$</a> <li><a href="132116?version=2&table=Resultsforchargeasymmetryvsmtt">$A_C^{t\bar{t}}$ vs $m_{t\bar{t}}$</a> <li><a href="132116?version=2&table=Resultsforchargeasymmetryvspttt">$A_C^{t\bar{t}}$ vs $p_{T,t\bar{t}}$</a> <li><a href="132116?version=2&table=Resultsforchargeasymmetryvsbetatt">$A_C^{t\bar{t}}$ vs $\beta_{z,t\bar{t}}$</a> <li><a href="132116?version=2&table=Resultsforleptonicchargeasymmetryinclusive">$A_C^{\ell\bar{\ell}}$</a> <li><a href="132116?version=2&table=Resultsforchargeasymmetryvsllmll">$A_C^{\ell\bar{\ell}}$ vs $m_{\ell\bar{\ell}}$</a> <li><a href="132116?version=2&table=Resultsforchargeasymmetryvsllptll">$A_C^{\ell\bar{\ell}}$ vs $p_{T,\ell\bar{\ell}}$</a> <li><a href="132116?version=2&table=Resultsforchargeasymmetryvsllbetall">$A_C^{\ell\bar{\ell}}$ vs $\beta_{z,\ell\bar{\ell}}$</a> </ul> <b>Bounds on the Wilson coefficients:</b> <ul> <li><a href="132116?version=2&table=BoundsonWilsoncoefficientschargeasymmetryinclusive">$A_C^{t\bar{t}}$</a> <li><a href="132116?version=2&table=BoundsonWilsoncoefficientschargeasymmetryvsmtt">$A_C^{t\bar{t}}$ vs $m_{t\bar{t}}$</a> </ul> <b>Ranking of systematic uncertainties:</b></br> Inclusive:<a href="132116?version=2&table=NPrankingchargeasymmetryinclusive">$A_C^{t\bar{t}}$</a></br> <b>$A_C^{t\bar{t}}$ vs $\beta_{z,t\bar{t}}$:</b> <ul> <li><a href="132116?version=2&table=NPrankingchargeasymmetryvsbetattbin0">$\beta_{z,t\bar{t}} \in[0,0.3]$</a> <li><a href="132116?version=2&table=NPrankingchargeasymmetryvsbetattbin1">$\beta_{z,t\bar{t}} \in[0.3,0.6]$</a> <li><a href="132116?version=2&table=NPrankingchargeasymmetryvsbetattbin2">$\beta_{z,t\bar{t}} \in[0.6,0.8]$</a> <li><a href="132116?version=2&table=NPrankingchargeasymmetryvsbetattbin3">$\beta_{z,t\bar{t}} \in[0.8,1]$</a> </ul> <b>$A_C^{t\bar{t}}$ vs $m_{t\bar{t}}$:</b> <ul> <li><a href="132116?version=2&table=NPrankingchargeasymmetryvsmttbin0">$m_{t\bar{t}}$ < $500$GeV</a> <li><a href="132116?version=2&table=NPrankingchargeasymmetryvsmttbin1">$m_{t\bar{t}} \in [500,750]$GeV</a> <li><a href="132116?version=2&table=NPrankingchargeasymmetryvsmttbin2">$m_{t\bar{t}} \in [750,1000]$GeV</a> <li><a href="132116?version=2&table=NPrankingchargeasymmetryvsmttbin3">$m_{t\bar{t}} \in [1000,1500]$GeV</a> <li><a href="132116?version=2&table=NPrankingchargeasymmetryvsmttbin4">$m_{t\bar{t}}$ > $1500$GeV</a> </ul> <b>$A_C^{t\bar{t}}$ vs $p_{T,t\bar{t}}$:</b> <ul> <li><a href="132116?version=2&table=NPrankingchargeasymmetryvsptttbin0">$p_{T,t\bar{t}} \in [0,30]$GeV</a> <li><a href="132116?version=2&table=NPrankingchargeasymmetryvsptttbin1">$p_{T,t\bar{t}} \in[30,120]$GeV</a> <li><a href="132116?version=2&table=NPrankingchargeasymmetryvsptttbin2">$p_{T,t\bar{t}}$ > $120$GeV</a> </ul> Inclusive leptonic:<a href="132116?version=2&table=NPrankingleptonicchargeasymmetryinclusive">$A_C^{\ell\bar{\ell}}$</a></br> <b>$A_C^{\ell\bar{\ell}}$ vs $\beta_{z,\ell\bar{\ell}}$</b> <ul> <li><a href="132116?version=2&tableNPrankingchargeasymmetry=vsllbetallbin0">$\beta_{z,\ell\bar{\ell}} \in [0,0.3]$</a> <li><a href="132116?version=2&tableNPrankingchargeasymmetry=vsllbetallbin1">$\beta_{z,\ell\bar{\ell}} \in [0.3,0.6]$</a> <li><a href="132116?version=2&tableNPrankingchargeasymmetry=vsllbetallbin2">$\beta_{z,\ell\bar{\ell}} \in [0.6,0.8]$</a> <li><a href="132116?version=2&tableNPrankingchargeasymmetry=vsllbetallbin3">$\beta_{z,\ell\bar{\ell}} \in [0.8,1]$</a> </ul> <b>$A_C^{\ell\bar{\ell}}$ vs $m_{\ell\bar{\ell}}$</b> <ul> <li><a href="132116?version=2&table=NPrankingchargeasymmetryvsllmllbin0">$m_{\ell\bar{\ell}}$ < $200$GeV</a> <li><a href="132116?version=2&table=NPrankingchargeasymmetryvsllmllbin1">$m_{\ell\bar{\ell}} \in [200,300]$GeV</a> <li><a href="132116?version=2&table=NPrankingchargeasymmetryvsllmllbin2">$m_{\ell\bar{\ell}} \in [300,400]$Ge$</a> <li><a href="132116?version=2&table=NPrankingchargeasymmetryvsllmllbin3">$m_{\ell\bar{\ell}}$ > $400$GeV</a> </ul> <b>$A_C^{\ell\bar{\ell}}$ vs $p_{T,\ell\bar{\ell}}$</b> <ul> <li><a href="132116?version=2&table=NPrankingchargeasymmetryvsllptllbin0">$p_{T,\ell\bar{\ell}}\in [0,20]$GeV</a> <li><a href="132116?version=2&table=NPrankingchargeasymmetryvsllptllbin1">$p_{T,\ell\bar{\ell}}\in[20,70]$GeV</a> <li><a href="132116?version=2&table=NPrankingchargeasymmetryvsllptllbin2">$p_{T,\ell\bar{\ell}}$ > $70$GeV</a> </ul> <b>NP correlations:</b> <ul> <li><a href="132116?version=2&table=NPcorrelationschargeasymmetryinclusive">$A_C^{t\bar{t}}$</a> <li><a href="132116?version=2&table=NPcorrelationschargeasymmetryvsmtt">$A_C^{t\bar{t}}$ vs $m_{t\bar{t}}$</a> <li><a href="132116?version=2&table=NPcorrelationschargeasymmetryvspttt">$A_C^{t\bar{t}}$ vs $p_{T,t\bar{t}}$</a> <li><a href="132116?version=2&table=NPcorrelationschargeasymmetryvsbetatt">$A_C^{t\bar{t}}$ vs $\beta_{z,t\bar{t}}$</a> <li><a href="132116?version=2&table=NPcorrelationsleptonicchargeasymmetryinclusive">$A_c^{\ell\bar{\ell}}$</a> <li><a href="132116?version=2&table=NPcorrelationschargeasymmetryvsllmll">$A_c^{\ell\bar{\ell}}$ vs $m_{\ell\bar{\ell}}$</a> <li><a href="132116?version=2&table=NPcorrelationschargeasymmetryvsllptll">$A_C^{\ell\bar{\ell}}$ vs $p_{T,\ell\bar{\ell}}$</a> <li><a href="132116?version=2&table=NPcorrelationschargeasymmetryvsllbetall">$A_C^{\ell\bar{\ell}}$ vs $\beta_{z,\ell\bar{\ell}}$</a> </ul> <b>Covariance matrices:</b> <ul> <li><a href="132116?version=2&table=Covariancematrixchargeasymmetryvsmtt">$A_C^{t\bar{t}}$ vs $m_{t\bar{t}}$</a> <li><a href="132116?version=2&table=Covariancematrixchargeasymmetryvspttt">$A_C^{t\bar{t}}$ vs $p_{T,t\bar{t}}$</a> <li><a href="132116?version=2&table=Covariancematrixchargeasymmetryvsbetatt">$A_C^{t\bar{t}}$ vs $\beta_{z,t\bar{t}}$</a> <li><a href="132116?version=2&table=Covariancematrixleptonicchargeasymmetryvsllmll">$A_c^{\ell\bar{\ell}}$ vs $m_{\ell\bar{\ell}}$</a> <li><a href="132116?version=2&table=Covariancematrixleptonicchargeasymmetryvsllptll">$A_C^{\ell\bar{\ell}}$ vs $p_{T,\ell\bar{\ell}}$</a> <li><a href="132116?version=2&table=Covariancematrixleptonicchargeasymmetryvsllbetall">$A_C^{\ell\bar{\ell}}$ vs $\beta_{z,\ell\bar{\ell}}$</a> </ul>
The unfolded inclusive charge asymmetry. The measured values are given with statistical and systematic uncertainties. The SM theory predictions calculated at NNLO in QCD and NLO in EW theory are listed, and the impact of the linear term of the Wilson coefficient on the $A_C^{t\bar{t}}$ prediction is shown for two different values. The scale uncertainty is obtained by varying renormalisation and factorisation scales independently by a factor of 2 or 0.5 around $\mu_0$ to calculate the maximum and minimum value of the asymmetry, respectively. The nominal value $\mu_0$ is chosen as $H_T/4$. The variations in which one scale is multiplied by 2 while the other scale is divided by 2 are excluded. Finally, the scale and MC integration uncertainties are added in quadrature.
The unfolded differential charge asymmetry as a function of the invariant mass of the top pair system. The measured values are given with statistical and systematic uncertainties. The SM theory predictions calculated at NNLO in QCD and NLO in EW theory are listed, and the impact of the linear term of the Wilson coefficient on the $A_C^{t\bar{t}}$ prediction is shown for two different values. The scale uncertainty is obtained by varying renormalisation and factorisation scales independently by a factor of 2 or 0.5 around $\mu_0$ to calculate the maximum and minimum value of the asymmetry, respectively. The nominal value $\mu_0$ is chosen as $H_T/4$. The variations in which one scale is multiplied by 2 while the other scale is divided by 2 are excluded. Finally, the scale and MC integration uncertainties are added in quadrature.
A combination of measurements of the inclusive top-quark pair production cross-section performed by ATLAS and CMS in proton-proton collisions at centre-of-mass energies of 7 and 8 TeV at the LHC is presented. The cross-sections are obtained using top-quark pair decays with an opposite-charge electron-muon pair in the final state and with data corresponding to an integrated luminosity of about 5 fb$^{-1}$ at $\sqrt{s}=7$ TeV and about 20 fb$^{-1}$ at $\sqrt{s}=8$ TeV for each experiment. The combined cross-sections are determined to be $178.5 \pm 4.7$ pb at $\sqrt{s}=7$ TeV and $243.3^{+6.0}_{-5.9}$ pb at $\sqrt{s}=8$ TeV with a correlation of 0.41, using a reference top-quark mass value of 172.5 GeV. The ratio of the combined cross-sections is determined to be $R_{8/7}= 1.363\pm 0.032$. The combined measured cross-sections and their ratio agree well with theory calculations using several parton distribution function (PDF) sets. The values of the top-quark pole mass (with the strong coupling fixed at 0.118) and the strong coupling (with the top-quark pole mass fixed at 172.5 GeV) are extracted from the combined results by fitting a next-to-next-to-leading-order plus next-to-next-to-leading-log QCD prediction to the measurements. Using a version of the NNPDF3.1 PDF set containing no top-quark measurements, the results obtained are $m_t^\text{pole} = 173.4^{+1.8}_{-2.0}$ GeV and $\alpha_\text{s}(m_Z)= 0.1170^{+ 0.0021}_{-0.0018}$.
Full covariance matrix including all systematic uncertainties expressed as nuisance parameters. With the exception of the cross section parameters, all parameters were normalised to 1 before the fit. Therefore, the diagonal elements represent the constraint in quadrature.
Full covariance matrix including all systematic uncertainties expressed as nuisance parameters. With the exception of the cross section parameters, all parameters were normalised to 1 before the fit. Therefore, the diagonal elements represent the constraint in quadrature.
We present a measurement of the $\nu_e$-interaction rate in the MicroBooNE detector that addresses the observed MiniBooNE anomalous low-energy excess (LEE). The approach taken isolates neutrino interactions consistent with the kinematics of charged-current quasi-elastic (CCQE) events. The topology of such signal events has a final state with 1 electron, 1 proton, and 0 mesons ($1e1p$). Multiple novel techniques are employed to identify a $1e1p$ final state, including particle identification that use two methods of deep-learning-based image identification, and event isolation using a boosted decision-tree ensemble trained to recognize two-body scattering kinematics. This analysis selects 25 $\nu_e$-candidate events in the reconstructed neutrino energy range of 200--1200 MeV, while $29.0 \pm 1.9_\text{(sys)} \pm 5.4_\text{(stat)}$ are predicted when using $\nu_\mu$ CCQE interactions as a constraint. We use a simplified model to translate the MiniBooNE LEE observation into a prediction for a $\nu_e$ signal in MicroBooNE. A $\Delta \chi^2$ test statistic, based on the combined Neyman--Pearson $\chi^2$ formalism, is used to define frequentist confidence intervals for the LEE signal strength. Using this technique, in the case of no LEE signal, we expect this analysis to exclude a normalization factor of 0.75 (0.98) times the median MiniBooNE LEE signal strength at 90% ($2\sigma$) confidence level, while the MicroBooNE data yield an exclusion of 0.25 (0.38) times the median MiniBooNE LEE signal strength at 90% ($2\sigma$) confidence
Observed NuE data and background (+ LEE) prediction, including the muon neutrino background prediction from the empirical fit, for arXiv:2110.14080. The prediction incorporates the constraint from the 1mu1p sample
Observed NuE data and background (+ LEE) prediction, including the muon neutrino background prediction from the empirical fit, for arXiv:2110.14080. The prediction does not incorporate the constraint from the 1mu1p sample
NuE background fractional covariance matrix after the 1mu1p constraint from arXiv:2110.14080