From the measured ratio of the invisible and the leptonic decay widths of theZ0, we determine the number of light neutrino species to beNv=3.05±0.10. We include our measurements of the forward-backward asymmetry for the leptonic channels in a fit to determine the vector and axial-vector neutral current coupling constants of charged leptons to theZ0. We obtain\(\bar g_V=- 0.046_{ - 0.012}^{ + 0.015}\) and\(\bar g_A=- 0.500 \pm 0.003\). In the framework of the Standard Model, we estimate the top quark mass to bemt=193−69+52±16 (Higgs) GeV, and we derive a value for the weak mixing angle of sin2θW=1−(MW/MZ)2=0.222 ± 0.008, corresponding to an effective weak mixing angle of\(\sin ^2 \bar \theta _W= 0.2315\pm0.0025\).
Additional systematic uncertainty of 0.4 pct.
Acceptance corrected cross section for cos(theta)<0.8 and for extrapolation to full solid angle. Additional systematic uncertainty of 0.8 pct.
Acceptance corrected cross section for cos(theta)<0.7 and for extrapolation to full solid angle. Additional systematic uncertainty of 2.1 pct.
We are reporting an improved determination of the electroweak mixing angle sin 2 Θ w from the ratio of ν μ e to ν μ e scattering cross sections. The CHARM II detector was exposed to neutrino and antineutrino wide band beams at the 450 GeV CERN SPS. Including new data collected in 1989 we have obtained 1316 ± 56 ν μ e and 1453 ± 62 ν μ e events. From the ratio of the visible cross sections we determined sin 2 Θ 0 =0.239 ± 0.009(stat) ± 0.007(syst) without radiative corrections and g V e g A e =0.047 ± 0.046 . Combining this last result with recent results on g A e at LEP we obtain g V e = −0.023 ± 0.023.
Systematic error presented includes error from flux normalization 'F'=1.030+- 0.022, no detaled description of the other sources and of the combination pr ocedure.. 'F'.
Without radiative corrections, systematic error combined in quadrature fromconponents listed under SYSTEMATICS.
With radiative corrections as defined by Marciano-Sirlin scheme, see Phys.Rev.D22(1980)2695, Phys.Rev.Lett.46(1981)163, Phys.Rev.D29(1984)945, Phys.Rev.D31(1985)213E, Nucl.Phys.B217(1983)84. CENTRAL VALUE IS FOR M(TOP)=100 GEV, M(HIGGS)=100 GEV.
We have measured the partial widths for the three reactions e + e − → Z 0 → e + e − , μ + μ − , τ + τ − . The results are Γ ee = 84.3±1.3 MeV, √ Γ ee Γ μμ =83.9±1.4 MeV, and √ Γ ee Γ ττ =83.9±1.4 MeV, where the errors are statistical. The systematic errors are estimated to be 1.0 MeV, 0.9 MeV, and 1.4 MeV, respectively. We perform a simultaneous fit to the cross sections for the e + e − →e + e − , μ + μ − , and τ + τ − data, the differential cross section as a function of polar angle for the electron data, and the forward- backward asymmetry for the muon data. We obtain the leptonic partial with Γ ℓℓ =84.0±0.9 (stat.) MeV. The systematic error is estimated to be 0.8 MeV. Also, we obtain the axial-vector and vector weak coupling constants of charged leptons, g A =−0.500±0.003 and g ν =−0.064 −0.013 +0.017 .
Cross section from 1990 data.
Visible cross section obtained using the cuts required by Method I (see text of paper). (1989 and 1990 data).
Visible cross section obtained using the cuts required by Method II (see text of paper). (1989 and 1990 data). RE = E+ E- --> E+ E- (GAMMA).
We report on the properties of theZ resonance from 62 500Z decays into fermion pairs collected with the ALEPH detector at LEP, the Large Electron-Positron storage ring at CERN. We findMZ=(91.193±0.016exp±0.030LEP) GeV, ΓZ=(2497±31) MeV, σhad0=(41.86±0.66)nb, and for the partial widths Γinv=(489±24) MeV, Γhad(1754±27) MeV, Γee=(85.0±1.6)MeV, Γμμ=(80.0±2.5) MeV, and Γττ=(81.3±2.5) MeV, all in good agreement with the Standard Model. Assuming lepton universality and using a lepton sample without distinction of the final state we measure Γu=(84.3±1.3) MeV. The forward-backward asymmetry in leptonic decays is used to determine the vector and axial-vector weak coupling constants of leptors,gv2(MZ2)=(0.12±0.12)×10−2 andgA2(MZ2)=0.2528±0.0040. The number of light neutrino species isNν=2.91±0.13; the electroweak mixing angle is sin2θW(MZ2)=0.2291±0.0040.
Hadronic cross section from the charged track selection trigger.
Hadronic cross section from the calorimeter selection trigger.
Averaged hadronic cross section.
We have measured the partial width and forward-backward charge asymmetry for the reaction e + e - →Z 0 →μ + μ - (γ). We obtain a partial width Γ μμ of 83.3±1.3(stat)±0.9(sys) MeV and the following values for the vector and axial vector couplings: g v =−0.062 −0.015 +0.020 and g A =−0.497 −0.005 +0.005 . From our measurement of the partial width and the mass of the Z 0 boson we determine the effective electroweak mixing angle, sin 2 θ w =0.232±0.005, and the neutral current coupling strength parameter, ϱ =0.998±0.016.
No description provided.
Forward backward charge asymmetry.
No description provided.
None
No description provided.
No description provided.
No description provided.
We have measured both the rates and the forward-backward asymmetry of ℓ + ℓ − from Z 0 →ℓ + ℓ − (where ℓ= μ , τ ) with the L3 detector. We obtained Γ ℓℓ =88±4±3 MeV and the vector neutral current coupling constant, g v =0.00±0.07 and the axial vector neutral current coupling constant, g A =−0.515±0.015.
No description provided.
No description provided.
Measurements of the differential cross sections for e + e − →μ + μ − and e + e − →τ + τ − at values of s from 52 to 57 GeV are reported. The forward-backward asymmetries and the total cross sections for these reactions are found to be in agreement with predictions of the standard model of the electro-weak interactions. These measurements are used to extract values of the weak coupling constant g v e g v l and g A e g A l , where l = μ or τ .
Axis error includes +- 5/5 contribution (Included in the quoted errors for the total cross sections. The main contribution to SYS-ERR are the systematic uncertainty in the luminosity measurement and the uncertainty in the computer modeling of the various efficiencies and backgrounds).
Axis error includes +- 5/5 contribution (Included in the quoted errors for the total cross sections. The main contribution to SYS-ERR are the systematic uncertainty in the luminosity measurement and the uncertainty in the computer modeling of the various efficiencies and backgrounds).
No description provided.
The Mark J Collaboration at the DESY e+e− collider PETRA presents results on the electroweak reactions e+e−→μ+μ−τ+τ−,μ+μ−γ, and e+e−μ+μ−. The c.m. energy range is 12 to 46.78 GeV. In the μ+μ− and τ+τ− channels the total cross sections and the forward-backward asymmetries are reported and compared with other experiments. The results are in excellent agreement with the standard model. The weak-neutral-current vector and axial-vector coupling constants are determined. The values for muons and τ’s are compatible with universality and with the predictions of the standard model. In the μ+μ−γ channel, all measured distributions, including the forward-backward muon asymmetry, are in excellent agreement with the electroweak theory. Our data on the two-photon process, e+e−μ+μ−, agrees with QED to order α4 over the entire energy range and the Q2 range from 0.7 to 166 GeV2.
SIG(QED) = 86.85/S.
No description provided.
No description provided.
We report on high statistics Bhabha scattering data taken with the TASSO experiment at PETRA at center of mass energies from 12 GeV to 46.8 GeV. We present an analysis in terms of electroweak parameters of the standard model, give limits on QED cut-off parameters and look for possible signs of compositeness.
Axis error includes +- 1/1 contribution (The overall uncertainty in the bin-to-bin polar acceptance due to shower corrections, trigger and reconstruction efficiencies was estimated to be less than 1% and was added in quadrature to the statistical errorsData have been corrected for qed radiative effects up to order alpha**3 (F.A.Berends, R.Kleiss, Nucl.Phys.B206(1983)61)//Weak radiative corrections have not yet been provided in a form of a Monte Carlo generator program, but are estimated to be negligible at PETRA energies (M.Bohm, A.Denner, W.Hollik, DESY-86-165)).
Axis error includes +- 1/1 contribution (The overall uncertainty in the bin-to-bin polar acceptance due to shower corrections, trigger and reconstruction efficiencies was estimated to be less than 1% and was added in quadrature to the statistical errorsData have been corrected for qed radiative effects up to order alpha**3 (F.A.Berends, R.Kleiss, Nucl.Phys.B206(1983)61)//Weak radiative corrections have not yet been provided in a form of a Monte Carlo generator program, but are estimated to be negligible at PETRA energies (M.Bohm, A.Denner, W.Hollik, DESY-86-165)).
Axis error includes +- 1/1 contribution (The overall uncertainty in the bin-to-bin polar acceptance due to shower corrections, trigger and reconstruction efficiencies was estimated to be less than 1% and was added in quadrature to the statistical errorsData have been corrected for qed radiative effects up to order alpha**3 (F.A.Berends, R.Kleiss, Nucl.Phys.B206(1983)61)//Weak radiative corrections have not yet been provided in a form of a Monte Carlo generator program, but are estimated to be negligible at PETRA energies (M.Bohm, A.Denner, W.Hollik, DESY-86-165)).