We report high-precision measurements of the longitudinal double-spin asymmetry, $A_{LL}$, for midrapidity inclusive jet and dijet production in polarized $pp$ collisions at a center-of-mass energy of $\sqrt{s}=200\,\mathrm{GeV}$. The new inclusive jet data are sensitive to the gluon helicity distribution, $\Delta g(x,Q^2)$, for gluon momentum fractions in the range from $x \simeq 0.05$ to $x \simeq 0.5$, while the new dijet data provide further constraints on the $x$ dependence of $\Delta g(x,Q^2)$. The results are in good agreement with previous measurements at $\sqrt{s}=200\,\mathrm{GeV}$ and with recent theoretical evaluations of prior world data. Our new results have better precision and thus strengthen the evidence that $\Delta g(x,Q^2)$ is positive for $x > 0.05$.
Parton inclusive-jet $p_T$ and $A_{LL}$ values with associated uncertainties for jet-$\eta$ region $0.5<|\eta|<1$.
Parton inclusive-jet $p_T$ and $A_{LL}$ values with associated uncertainties for jet-$\eta$ region $|\eta|<0.5$.
Parton dijet invariant mass $M_{inv}$ and $A_{LL}$ values with associated uncertainties for the $\textrm{sign}(\eta_1) = \textrm{sign}(\eta_2)$ topology.
This article presents differential measurements of the asymmetry between $\Lambda_b^0$ and $\overline{\Lambda}_b^0$ baryon production rates in proton-proton collisions at centre-of-mass energies of $\sqrt{s}=7$ and $8\,\textrm{TeV}$ collected with the LHCb experiment, corresponding to an integrated luminosity of $3\,\textrm{fb}^{-1}$. The $\Lambda_b^0$ baryons are reconstructed through the inclusive semileptonic decay $\Lambda_b^0\rightarrow\Lambda_c^+\mu^-\overline{\nu}_{\mu}X$. The production asymmetry is measured both in intervals of rapidity in the range $2.15<y<4.10$ and transverse momentum in $2<p_T<27\,\textrm{GeV}/c$. The results are found to be incompatible with symmetric production with a significance of 5.8 standard deviations for both $\sqrt{s}=7$ and $8\,\textrm{TeV}$ data, assuming no $C\!P$ violation in the decay. There is evidence for a trend as a function of rapidity with a significance of 4 standard deviations. Comparisons to predictions from hadronisation models in PYTHIA and heavy-quark recombination are provided. This result constitutes the first observation of a particle-antiparticle asymmetry in $b$-hadron production at LHC energies.
$\Lambda_{b}^{0}$ production asymmetry in bins of $\Lambda_{b}^{0}$ rapidity for proton-proton collisions at $\sqrt{s} = 7$ TeV. The first uncertainty is statistical and the second represents the systematic uncertainty. The results in neighbouring intervals are correlated.
$\Lambda_{b}^{0}$ production asymmetry in bins of $\Lambda_{b}^{0}$ rapidity for proton-proton collisions at $\sqrt{s} = 8$ TeV. The first uncertainty is statistical and the second represents the systematic uncertainty. The results in neighbouring intervals are correlated.
$\Lambda_{b}^{0}$ production asymmetry in bins of $\Lambda_{b}^{0}$ $p_T$ for proton-proton collisions at $\sqrt{s} = 7$ TeV. The first uncertainty is statistical and the second represents the systematic uncertainty. The results in neighbouring intervals are correlated.
This paper presents a first measurement of the cross-section for the charged-current Drell-Yan process $pp\rightarrow W^{\pm} \rightarrow \ell^{\pm} ν$ above the resonance region, where $\ell$ is an electron or muon. The measurement is performed for transverse masses, $m_{\text{T}}^{\text{W}}$, between 200 GeV and 5000 GeV, using a sample of 140 fb$^{-1}$ of $pp$ collision data at a centre-of-mass energy of $\sqrt{s}$ = 13 TeV collected by the ATLAS detector at the LHC during 2015-2018. The data are presented single differentially in transverse mass and double differentially in transverse mass and absolute lepton pseudorapidity. A test of lepton flavour universality shows no significant deviations from the Standard Model. The electron and muon channel measurements are combined to achieve a total experimental precision of 3% at low $m_{\text{T}}^{\text{W}}$. The single- and double differential $W$-boson charge asymmetries are evaluated from the measurements. A comparison to next-to-next-to-leading-order perturbative QCD predictions using several recent parton distribution functions and including next-to-leading-order electroweak effects indicates the potential of the data to constrain parton distribution functions. The data are also used to constrain four fermion operators in the Standard Model Effective Field Theory formalism, in particular the lepton-quark operator Wilson coefficient $c_{\ell q}^{(3)}.$