Inclusive production of π+ on four nuclear targets has been studied using a 40 GeV/c π- beam at the Serpukhov accelerator. No noticeable A-dependence has been found.
'CM' MEAN PION NUCLEON REST SYSTEM.
No description provided.
No description provided.
None
No description provided.
No description provided.
No description provided.
None
No description provided.
No description provided.
No description provided.
Precise measurements of the spin structure functions of the proton $g_1^p(x,Q^2)$ and deuteron $g_1^d(x,Q^2)$ are presented over the kinematic range $0.0041 \leq x \leq 0.9$ and $0.18 $ GeV$^2$ $\leq Q^2 \leq 20$ GeV$^2$. The data were collected at the HERMES experiment at DESY, in deep-inelastic scattering of 27.6 GeV longitudinally polarized positrons off longitudinally polarized hydrogen and deuterium gas targets internal to the HERA storage ring. The neutron spin structure function $g_1^n$ is extracted by combining proton and deuteron data. The integrals of $g_1^{p,d}$ at $Q^2=5$ GeV$^2$ are evaluated over the measured $x$ range. Neglecting any possible contribution to the $g_1^d$ integral from the region $x \leq 0.021$, a value of $0.330 \pm 0.011\mathrm{(theo.)}\pm0.025\mathrm{(exp.)}\pm 0.028$(evol.) is obtained for the flavor-singlet axial charge $a_0$ in a leading-twist NNLO analysis.
Integrals of G1 for P, DEUT and N targets.. The second DSYS systematic error is due to the uncertainty in the parameterizations (R, F2, A2, Azz, omegaD).. The third DSYS systematic error is due to the uncertainty in evolving to a common Q**2.
Integrals of G1 for the Non-Singlet contributions.. The second DSYS systematic error is due to the uncertainty in the parameterizations (R, F2, A2, Azz, omegaD).. The third DSYS systematic error is due to the uncertainty in evolving to a common Q**2. Axis error includes +- 5.2/5.2 contribution.
Integrals of G1 over different X ranges for P target at various Q*2 values. The second DSYS systematic error is due to the uncertainty in the parameterizations (R, F2, A2, Azz, omegaD).. The third DSYS systematic error is due to the uncertainty in evolving to a common Q**2. Axis error includes +- 5.2/5.2 contribution.
The diffractive production of ρ0(770 @#@) mesons in muon-proton interactions is studied in the kinematic region 0.15 GeV2< Q2< 20 GeV2 and 20 GeV < ? < 420 GeV. The data were obtained in the Fermilab fixed-target experiment E665 with primary muons of 470 GeV energy. Results are presented on the Q2, x and ? dependence of the cross section, on the shape of the ρ+ρt - mass spectrum, on the slope of the diffraction peak and on the production and decay angular distributions of the ρ0(770). The cross section for diffractive production of ρ0 by virtual photons on protons depends mainly on Q2. At fixed Q2, no significant dependence on x or ? is observed. The extrapolation to Q2 = 0 yields a photoproduction cross section of (10.30 ± 0.33) μb. The slope of the t′ distribution has a value of (7.0 ± 0.2) GeV−2, with a tendency to decrease as Q2 increases. The production and decay angular distributions of the ρ0 depend strongly on Q2 and are consistent with s-channel helicity conservation. The ratio R = σl/σt deduced from the decay angular distributions rises strongly with Q2, passing the value of 1 at Q2≈ 2 GeV2.
Statistical errors only.
Statistical errors only.
Cross section extrapolated to Q**2 = 0.
Results are presented on the ratios of the nucleon structure function in copper to deuterium from two separate experiments. The data confirm that the nucleon structure function,F2, is different for bound nucleons than for the quasi-free ones in the deuteron. The redistribution in the fraction of the nucleon's momentum carried by quarks is investigated and it is found that the data are compatible with no integral loss of quark momenta due to nuclear effects.
Results from the 'chariot' experiment.
Results from the 'addendum' experiment.
Merged 'chariot' and 'addendum' ratio.. Errors are combined statistics and systematics.
Final data measured with the EMC forward spectrometer are presented on the production of forward charged hadrons in μp and μd scattering at incident beam energies between 100 and 280 GeV. The large statistic of 373 000 events allows a study of the semi-inclusive hadron production as a function ofz,pT2 and 〈pT2〉 in smallQ2,xBj andW bins. Charge multiplicity ratios and differences as a function ofz andxBj are given forp, d andn-targets. From the differences of charge multiplicities the ratio of the valence quark distributions of the protondv(x)/uv(x) is determined for the first time in charged lepton scattering. The Gronau et al. sum rule is tested, the measured sum being 0.31±0.06 stat. ±0.05 syst., compared with the theoretical expectation of 2/7≈0.286. The measured sum corresponds to an absolute value of the ratio of thed andu quark charge of 0.44±0.10 stat.±0.08 syst.
No description provided.
No description provided.
No description provided.
Measurements are presented of the inclusive distributions of theJ/Ψ meson produced by muons of energy 200 GeV from an ammonia target. The gluon distribution of the nucleon has been derived from the data in the range 0.04
Data are normalized to total cross section of 36 nb (not corrected for coherence).
Data are normalized to total cross section of 36 nb (not corrected for coherence).
Data are normalized to total cross section of 36 nb (not corrected for coherence).
The photon structure function F 2 has been measured at average Q 2 values of 73,160 and 390 ( GeV c ) 2 . We compare the x dependence of the Q 2 = 73 ( GeV c ) 2 data with theoretical expectations based on QCD. In addition we present results on the Q 2 evolution of the structure function for the intermediate x range (0.3⩽ x ⩽0.8). The results are consistent with QCD.
X dependence at Q**2 = 73 GeV**2 for light quark data.
X dependence at Q**2 = 73 GeV**2 for total data.
Photon structure function F2 for total data.
Measurements were made at SLAC of the cross section for scattering 29 GeV electrons from carbon at a laboratory angle of 4.5 degrees, corresponding to 0.03<x<0.1 and 1.3<Q^2<2.7 GeV^2. Values of R=sigma_L/sigma_T were extracted in this kinematic range by comparing these data to cross sections measured at a higher beam energy by the NMC collaboration. The results are in reasonable agreement with pQCD calculations and with extrapolations of the R1990 parameterization of previous data. A new fit is made including these data and other recent results.
LOOP-OVER;.