Modern physics experiments are frequently very complex, relying on multiple simultaneous events to happen in order to obtain the desired result. The experiment control system plays a central role in orchestrating the measurement setup: However, its development is often treated as secondary with respect to the hardware, its importance becoming evident only during the operational phase. Therefore, the AEgIS (Antimatter Experiment: Gravity, Interferometry, Spectroscopy) collaboration has created a framework for easily coding control systems, specifically targeting atomic, quantum, and antimatter experiments. This framework, called Total Automation of LabVIEW Operations for Science (TALOS), unifies all the machines of the experiment in a single entity, thus enabling complex high-level decisions to be taken, and it is constituted by separate modules, called MicroServices, that run concurrently and asynchronously. This enhances the stability and reproducibility of the system while allowing for continuous integration and testing while the control system is running. The system demonstrated high stability and reproducibility, running completely unsupervised during the night and weekends of the data-taking campaigns. The results demonstrate the suitability of TALOS to manage an entire physics experiment in full autonomy: being open-source, experiments other than the AEgIS experiment can benefit from it.
Graph showing the number of antiprotons captured vs the closure timing of the trap. It clearly shows the presence of a best working point. Closing too fast lets some antiprotons out, and, conversely, closing too slow lets some antiprotons escape after the bounce on the second electrode.
Graph showing the number of antiprotons captured varying the potential of the catching electrodes. This scan characterizes the energy profile of the p's passing through the degrader, and their ratio is in good accordance with our GEANT4 simulations.
Two graphs show the results of the scan over the horizontal and vertical displacements of the antiproton beam (on the left) and the horizontal and vertical angles (see Table 4, after). The color represents the intensity of the signal obtained on the MCP from the annihilations of the trapped antiprotons. The parameter space has been organized in this way, assuming that displacements and angles have independent effects, not for physics reasons, but because scanning over the full parameter space would have been impossible time-wise (10 steps per dimension 4 dimensions x 5 min of duration of the script ~35 days!).
We report on laser cooling of a large fraction of positronium (Ps) in free-flight by strongly saturating the $1^3S$-$2^3P$ transition with a broadband, long-pulsed 243 nm alexandrite laser. The ground state Ps cloud is produced in a magnetic and electric field-free environment. We observe two different laser-induced effects. The first effect is an increase in the number of atoms in the ground state after the time Ps has spent in the long-lived $3^3P$ states. The second effect is the one-dimensional Doppler cooling of Ps, reducing the cloud's temperature from 380(20) K to 170(20) K. We demonstrate a 58(9) % increase in the coldest fraction of the Ps ensemble.
SSPALS spectra of positronium in vacuum without lasers, with the 205 nm and 1064 nm lasers, with the 243 nm laser only, and with all three lasers 243 nm, 205 nm and 1064 nm. The 243 nm laser is firing during the time window from −20 to 50 ns, while the 205 nm and 1064 nm are injected 75 ns after positron implantation time (t = 0 ns). Each curve is an average of 90 individual spectra. The statistical error is smaller than the linewidths. For analysis, the spectra were integrated between 150 and 400 ns.
Ps velocity distribution measured by SSPALS. Transverse Doppler profile measured by two-photon resonant ionization. A Gaussian fit yields an rms width of 44(1) pm, which translates to a Ps rms velocity of 5.3 $\pm$ 0.2 × 10$^4$ m/s after deconvoluting the laser bandwidth.
Ps velocity distribution measured by SSPALS. Velocity-resolved increase in the number of ground state Ps atoms, induced by the 243 nm transitory excitation to the 2$^3$P level. At resonance, the expected Lamb dip is observed. A 2-Gaussian fit yields an rms width of the enveloping Gaussian of 44(3) pm, which corresponds to a Ps rms velocity of 4.9 $\pm$ 0.4 × 10$^4$ m/s.
A powerful and robust control system is a crucial, often neglected, pillar of any modern, complex physics experiment that requires the management of a multitude of different devices and their precise time synchronisation. The AEgIS collaboration presents CIRCUS, a novel, autonomous control system optimised for time-critical experiments such as those at CERN's Antiproton Decelerator and, more broadly, in atomic and quantum physics research. Its setup is based on Sinara/ARTIQ and TALOS, integrating the ALPACA analysis pipeline, the last two developed entirely in AEgIS. It is suitable for strict synchronicity requirements and repeatable, automated operation of experiments, culminating in autonomous parameter optimisation via feedback from real-time data analysis. CIRCUS has been successfully deployed and tested in AEgIS; being experiment-agnostic and released open-source, other experiments can leverage its capabilities.
Synchronous voltage ramp-up to 20 V on three high-voltage amplifier channels 10 μs subsequent to the arrival of a common trigger pulse at zero time in the figure. The inset shows a zoom to the shoulder region for a better visualisation of the synchronicity.
A feedback loop uses the uncorrected laser pulse timings (red squares) to calculate the deviation from the user setting (solid black line) over the course of an hour, and corrects the timing of the subsequent desired laser pulse that is used for the actual experiment (blue circles). Independent of short-term to long-term drifts or even sudden jumps, the resulting timing is always close to the desired value.
A feedback loop uses the uncorrected laser pulse timings (red squares) to calculate the deviation from the user setting (solid black line) over the course of an hour, and corrects the timing of the subsequent desired laser pulse that is used for the actual experiment (blue circles). Independent of short-term to long-term drifts or even sudden jumps, the resulting timing is always close to the desired value.
The PHENIX experiment presents results from the RHIC 2006 run with polarized proton collisions at sqrt(s) = 62.4 GeV for inclusive pi^0 production at mid-rapidity. Unpolarized cross section results are measured for transverse momenta p_T = 0.5 to 7 GeV/c. Next-to-leading order perturbative quantum chromodynamics calculations are compared with the data, and while the calculations are consistent with the measurements, next-to-leading logarithmic corrections improve the agreement. Double helicity asymmetries A_LL are presented for p_T = 1 to 4 GeV/c and probe the higher range of Bjorken_x of the gluon (x_g) with better statistical precision than our previous measurements at sqrt(s)=200 GeV. These measurements are sensitive to the gluon polarization in the proton for 0.06 < x_g < 0.4.
The fraction of inclusive $\pi^0$ yield which satisfied the BBC trigger condition.
The neutral pion production cross section at $\sqrt{s}$ = 62.4 GeV as a function of $p_T$ and the results of next-to-leading order (NLO) and next-to-leading logarithmic accuracy (NLL) perturbative Quantum Chromodynamics (pQCD) calculations for the theory scale $\mu$ = $p_T$.
The parameter $n$ obtained from the ratio of invariant cross section at $\sqrt{s}$ = 62.4 GeV and $\sqrt{s}$ = 200GeV, at each $x_T$ of $\sqrt{s}$ = 62.4 GeV data; error bars show the statistical and systematic uncertainties of the $\sqrt{s}$ = 62.4 GeV and $\sqrt{s}$ = 200 GeV data.
We report on the yield of protons and anti-protons, as a function of centrality and transverse momentum, in Au+Au collisions at sqrt(s_NN) = 200 GeV measured at mid-rapidity by the PHENIX experiment at RHIC. In central collisions at intermediate transverse momenta (1.5 < p_T < 4.5 GeV/c) a significant fraction of all produced particles are protons and anti-protons. They show a centrality-scaling behavior different from that of pions. The p-bar/pion and p/pion ratios are enhanced compared to peripheral Au+Au, p+p, and electron+positron collisions. This enhancement is limited to p_T < 5 GeV/c as deduced from the ratio of charged hadrons to pi^0 measured in the range 1.5 < p_T < 9 GeV/c.
$p$/$\pi^+$ and $p$/$\pi^-$ ratios for central (0-10%) mid-central (20-30%) and peripheral (60-92%) Au+Au collisions at $\sqrt{s_{NN}}$ = 200 GeV.
$p$/$\pi^-$ and $p$/$\pi^0$ ratios for central (0-10%) mid-central (20-30%) and peripheral (60-92%) Au+Au collisions at $\sqrt{s_{NN}}$ = 200 GeV.
$p$ and $\bar{p}$ invariant yields scaled by $N_{coll}$. Error bars are statistical. Systematic errors on $N_{coll}$ range from ~ 10% for central to ~ 28% for 60-92% centrality. Multiplicity dependent normalization errors are ~3%.
In 2015 the PHENIX collaboration at the Relativistic Heavy Ion Collider recorded $p+p$, $p+$Al, and $p+$Au collision data at center of mass energies of $\sqrt{s_{_{NN}}}=200$ GeV with the proton beam(s) transversely polarized. At very forward rapidities $\eta>6.8$ relative to the polarized proton beam, neutrons were detected either inclusively or in (anti)correlation with detector activity related to hard collisions. The resulting single spin asymmetries, that were previously reported, have now been extracted as a function of the transverse momentum of the neutron as well as its longitudinal momentum fraction $x_F$. The explicit kinematic dependence, combined with the correlation information allows for a closer look at the interplay of different mechanisms suggested to describe these asymmetries, such as hadronic interactions or electromagnetic interactions in ultra-peripheral collisions, UPC. Events that are correlated with a hard collision indeed display a mostly negative asymmetry that increases in magnitude as a function of transverse momentum with only little dependence on $x_F$. In contrast, events that are not likely to have emerged from a hard collision display positive asymmetries for the nuclear collisions with a kinematic dependence that resembles that of a UPC based model. Because the UPC interaction depends strongly on the charge of the nucleus, those effects are very small for $p+p$ collisions, moderate for $p+$Al collisions, and large for $p+$Au collisions.
Measured forward neutron single spin asymmetries in p+p collisions as a function of pT in bins of xF
Measured forward neutron single spin asymmetries in p+Al collisions as a function of pT in bins of xF
Measured forward neutron single spin asymmetries in p+Au collisions as a function of pT in bins of xF
New measurements are presented for charged hadron azimuthal correlations at mid-rapidity in Au+Au collisions at sqrt(s_NN) = 62.4 and 200 GeV. They are compared to earlier measurements obtained at sqrt(s_NN) = 130 GeV and in Pb+Pb collisions at sqrt(s_NN) = 17.2 GeV. Sizeable anisotropies are observed with centrality and transverse momentum (p_T) dependence characteristic of elliptic flow (v_2). For a broad range of centralities, the observed magnitudes and trends of the differential anisotropy, v_2(p_T), change very little over the collision energy range sqrt(s_NN) = 62-200 GeV, indicating saturation of the excitation function for v_2 at these energies. Such a saturation may be indicative of the dominance of a very soft equation of state for sqrt(s_NN) = 62-200 GeV.
Assorted-$p_T$ correlation functions (0.65 < $p_{T,ref}$ < 2.5 GeV/$c$) for charged hadrons of 0.5 < $p_T$ < 0.7 GeV/$c$ and 1.0 < $p_T$ < 1.5 obtained in Au+Au collisions at $\sqrt{S_{NN}}$ = 62.4 GeV.
Differential anisotropy $v_2$($p_T$) for charged hadrons in Au + Au collisions at $\sqrt{s_{NN}}$ = 200 GeV obtained via cumulants method
Differential anisotropy $v_2$($p_T$) for charged hadrons in Au + Au collisions at $\sqrt{s_{NN}}$ = 200 GeV obtained via correlation function method
In 2015, the PHENIX collaboration has measured very forward ($\eta>6.8$) single-spin asymmetries of inclusive neutrons in transversely polarized proton-proton and proton-nucleus collisions at a center of mass energy of 200 GeV. A previous publication from this data set concentrated on the nuclear dependence of such asymmetries. In this measurement the explicit transverse-momentum dependence of inclusive neutron single spin asymmetries for proton-proton collisions is extracted using a bootstrapping-unfolding technique on the transverse momenta. This explicit transverse-momentum dependence will help improve the understanding of the mechanisms that create these asymmetries.
Measured and unfolded forward neutron single spin asymmetries using 3rd order polynomial parameterization in unfolding
Measured and unfolded forward neutron single spin asymmetries using a Power law parameterization in unfolding
Measured and unfolded forward neutron single spin asymmetries using an exponential parameterization in unfolding
We present results on the measurement of lambda and lambda^bar production in Au+Au collisions at sqrt(s_NN)=130 GeV with the PHENIX detector at RHIC. The transverse momentum spectra were measured for minimum bias and for the 5% most central events. The lambda^bar/lambda ratios are constant as a function of p_T and the number of participants. The measured net lambda density is significantly larger than predicted by models based on hadronic strings (e.g. HIJING) but in approximate agreement with models which include the gluon junction mechanism.
Transverse momentum spectra of $\Lambda$ and $\bar{\Lambda}$ for minimum-bias and for the $5\%$ most central events.
The ratio of $\bar{\Lambda}$/$\Lambda$ as a function of $p_T$.
The ratio of $\bar{\Lambda}$/$\Lambda$ as a function of the number of participants.
Transverse momentum spectra of electrons from Au+Au collisions at sqrt(s_NN) = 130 GeV have been measured by the PHENIX experiment at RHIC. The spectra show an excess above the background from photon conversions and light hadron decays. The electron signal is consistent with that expected from semi-leptonic decays of charm. The yield of the electron signal dN_e/dy for p_T > 0.8 GeV/c is 0.025 +/- 0.004 (stat.) +/- 0.010 (sys.) in central collisions, and the corresponding charm cross section is 380 +/- 60 (stat.) +/- 200 (sys.) micro barns per binary nucleon-nucleon collision.
Transverse momentum spectra of electrons in PHENIX from Au+Au collisions at $\sqrt{s_{NN}}$ = 130 GeV.
Transverse momentum spectra of electrons in PHENIX from Au+Au collisions at $\sqrt{s_{NN}}$ = 130 GeV.
Transverse momentum spectra of electrons in PHENIX from Au+Au collisions at $\sqrt{s_{NN}}$ = 130 GeV. The upper limit for 1.9 GeV/$c$ is 4.10224e-05.