We present results on .~--p seattering at kinetic energies in the laboratory of 516, 616, 710, 887 and 1085MeV. The data were obtained by exposing a liquid hydrogen bubble chamber to a pion beam from the Saelay proton synchrotron Saturne. The chamber had a diameter of 20 cm and a depth of 10 cm. There was no magnetic field. Two cameras, 15 em apart, were situated at 84 cm from the center- of the chamber. A triple quadrnpole lens looking at an internal target, and a bending magnet, defined the beam, whose momentum spread was less than 2%. The value of the momentum was measured by the wire-orbit method and by time of flight technique, and the computed momentum spread was checked by means of a Cerenkov counter. The pictures were scanned twice for all pion interactions. 0nly those events with primaries at most 3 ~ off from the mean beam direction and with vertices inside a well defined fiducial volume, were considered. All not obviously inelastic events were measured and computed by means of a Mercury Ferranti computer. The elasticity of the event was established by eoplanarity and angular correlation of the outgoing tracks. We checked that no bias was introduced for elastic events with dip angles for the scattering plane of less than 80 ~ and with cosines of the scattering angles in the C.M.S. of less than 0.95. Figs. 1 to 5 show the angular distributions for elastic scattering, for all events with dip angles for the scattering plane less than 80 ~ . The solid curves represent a best fit to the differential cross section. The ratio of charged inelastic to elastic events, was obtained by comparing the number of inelastic scatterings to the areas under the solid curves which give the number of elastic seatterings.
No description provided.
No description provided.
No description provided.
The cross-sections σ(Eγ,ϑ ) for the reaction pγ→ n+ have been measured near threshold as a function of photon energy and at four angles. See Table I. These results combined with previously known data, have given a fairly complete and accurate description of σ(Eγ,θ) between the limits 30°≤θ≤180° and 170≤ Eγ 270 MeV. See Table II and Pig. 2. Writing σ(Eγ,θ) = W·a0 + a1 cos θ + a2 cos2 θ× withW= ηωl +(μ/Ei)ξ −1·l + (μ/E f )ω×−1 (see formula (5)) the experimental data indicate that (Table III) a0 is constant up to about Eγ ≃ 260 MeV; and that (Table V) the three ai coefficients analyzed in terms ofS andP waves give a very small spin flippingP-amplitudeK. The presumption that theS amplitudeE 1 ismainly due to the gauge invariance requirement is definitely not consistent with the data (see Table IV). A discussion based on the Kroll and Rudermann theorem leads to the conclusion that this inconsistency may be eliminated if allowance is made for the contribution of fairly large nucleon recoils. However, it turns out that only the changing sign part of these recoils is really large and apparently so up to terms of order higher than μM. The amount of the recoil at threshold is estimated and consequently a value for the pspv interaction constant is derived.
No description provided.
No description provided.
No description provided.
New results are presented on the differential cross-section for the reaction α+p→π0+p, at energies between 600 and 1000 MeV, and c.m. pion angles Θ*π=40° and Θ*π=60°. The present data, together with that at Θ*π=40° already published (11), show an angle-independent position of the second resonance at about 750 MeV. Rather flat angular distributions in the forward c.m. hemisphere are also favoured by these data. On comparing the cross-sections obtained when detecting both the neutral pion and the recoil proton, and when detecting only the latter, estimates of the background of «ghost protons» are obtained, in agreement with the empirical curve proposed in ref. (11).
No description provided.
Photoproduction cross-section of the η-particle for incident photon energiesK from ∼800 to ∼1000 MeV has been measured at the 1.1 GeV Frascati electronsynchrotron. The differential cross-section for this process, at a c.m. angle of the η of ∼110°, turns out to be fairly constant for 830 MeV≤K≤900 MeV, and drops down by a factor 5 to 10 atK=950 MeV. These results are discussed in terms of a comparison with the data on the production of η's by pions, and with the data on pion-nucleon scattering and pion photoproduction. The conclusions are in agreement with the hypothesis that the η-N system is dominated at low energies by a resonance with orbital angular momentuml=0 (S 1/2,1/2 resonance).
No description provided.
The differential cross-section for elastic scattering π−+p has been determined on the basis of 1 421 events observed in a propane bubble chamber. The angular distribution presents a backward bump (θ>90°) of (31.5±1.3)%. The amplitude at 0° obtained extrapolating the angular distribution by means of a least squares fit is compared with the value obtained from the dispersion relations and the optical theorem. New values of the pion proton cross-sections were taken into account for the dispersion relation integrals. Using the same best fit of the angular distribution a value for the interaction radius is obtained from considerations based on the diffraction scattering part.
No description provided.
The elastic scattering of photons by protons has been measured for 100 MeV to 290 MeV photons at 90° c.m.s. and 139° c.m.s. scattering angles. The expected large increase in cross-section is observed at energies approaching that of (3/2, 3/2) pion-nucleon resonance. The scattering can be qualitatively explained by the ordinary Thomson amplitude combined with that of the (3/2, 3/2) resonance. A more detailed examination of the cross-section in the region just above the photo-meson threshold has shown that it is sensitive to the π0 photon coupling. From the experimental data, one may conclude that the π0 mean life should be between 10−16 and 10−18 s.
No description provided.
perimental analysis of the process is presented. Theσ(−)/σ(+) ratio has been measured in the photon energy interval (170÷230) MeV and Lab. angles 45°, 75°, 105°, 150°. The results are interpreted on the base of the impulse approximation with the aim of getting information on the processhv+n →π −+p.
No description provided.
No description provided.
No description provided.
The gp-->etap reaction has been measured with the Crystal Ball and TAPS multiphoton spectrometers in the energy range from the production threshold of 707 MeV to 1.4 GeV (1.49 =< W >= 1.87 GeV). Bremsstrahlung photons produced by the 1.5-GeV electron beam of the Mainz Microtron MAMI-C and momentum analyzed by the Glasgow Tagging Spectrometer were used for the eta-meson production. Our accumulation of 3.8 x 10^6 gp-->etap-->3pi0p-->6gp events allows a detailed study of the reaction dynamics. The gp-->etap differential cross sections were determined for 120 energy bins and the full range of the production angles. Our data show a dip near W = 1680 MeV in the total cross section caused by a substantial dip in eta production at forward angles. The data are compared to predictions of previous SAID and MAID partial-wave analyses and to thelatest SAID and MAID fits that have included our data.
Total cross section for the reaction GAMMA P --> ETA P.
Differential cross section for the reaction GAMMA P --> ETA P at a photon energy of 710.4 MeV. The errors in the table are statistical only and there is an overall systematic uncertainty of 4.3 PCT.
Differential cross section for the reaction GAMMA P --> ETA P at a photon energy of 714.5 MeV. The errors in the table are statistical only and there is an overall systematic uncertainty of 4.3 PCT.
The reaction gamma p -> p pi0 gamma' has been measured with the Crystal Ball / TAPS detectors using the energy-tagged photon beam at the electron accelerator facility MAMI-B. Energy and angular differential cross sections for the emitted photon gamma' and angular differential cross sections for the pi0 have been determined with high statistics in the energy range of the Delta+(1232) resonance. Cross sections and the ratio of the cross section to the non-radiative process gamma p -> p pi0 are compared to theoretical reaction models, having the anomalous magnetic moment kappa_Delta+ as free parameter. As the shape of the experimental distributions is not reproduced in detail by the model calculations, currently no extraction of kappa_Delta+ is feasible.
Total cross section for the background reaction GAMMA P --> P PI0.
Total cross section for the background reaction GAMMA P --> P PI0 PI0.
Angular distribution of the PI0 in the reaction GAMMA P --> P PI0 at beam energy 400 MeV. Inclusive measurement where only the PI0 decay photons are detected.
Differential cross sections for $K^-$ radiative capture in flight on the proton, leading to the $\gamma\Lambda$ and $\gamma\Sigma^0$ final states, have been measured at eight $K^-$ momenta between 514 and 750 MeV/$c$. The data were obtained with the Crystal Ball multiphoton spectrometer installed at the separated $K/\pi$ beam line C6 of the BNL Alternating Gradient Synchrotron. The results substantially improve the existing experimental data available for studying radiative decays of excited hyperon states. An exploratory theoretical analysis is performed within the Regge-plus-resonance approach. According to this analysis, the $\gamma\Sigma^0$ final state is dominated by hyperonresonance exchange and hints at an important role for a resonance in the mass region of 1700 MeV. In the $\gamma\Lambda$ final state, on the other hand, the resonant contributions account for only half the strength, and the data suggest the importance of a resonance in the mass region of 1550 MeV.
Differential cross section for the K- P --> GAMMA LAMBDA reaction at thelower beam momenta.
Differential cross section for the K- P --> GAMMA LAMBDA reaction at thehigher beam momenta.
Differential cross section for the K- P --> GAMMA SIGMA0 reaction at thelower beam momenta.