We report evidence for beauty particle production through the observation of dimuon events from proton-antiproton collisions at energies of √ s =546 GeV and √ s =630 GeV at the CERN collider. Our data indicate that semi-leptonic decays of beauty particles are the dominant source of pairs of high- p T muons. The beauty flavour creation (gg or q¯q→b¯b ) cross-section needed to explain the dimuon rate is σ{ p¯p→b¯b +X, p b T 5 GeV/c, |η|<2.0}=(1.1±0.1±0.4) μb, which is in good agreement with QCD calculations. We also observe clear signals for ϒ→μ + μ − (hidden beauty) and high- p T J/ψ→μ + μ − , well above the backgraound of continuum muon pairs from the Drell-Yan mechanism.
No description provided.
The inclusive production of D ∗± mesons in single tagged photon-photon collisions is investigated using the JADE detector at PETRA. D ∗± mesons are reconstructed through their decay into D 0 +π ± where the D 0 decays via D 0 →Kππ 0 . The event rate and topology are compared to the expectations of c quark production in the quark-parton model: γγ→c c .
No description provided.
A charge asymmetry has been observed in final-state jets from e+e− annihilation into hadrons at √s =29 GeV. The measured asymmetry is consistent with the prediction of electroweak theory. The product of axial-vector weak coupling constants, averaged over all quark flavors, is determined to be 〈gAegAq〉=-0.34±0.06±0.05.
Measured differential cross section after efficiency and radiative cross sections. THETA is the polar-angle of the thrust axis defined to be the angle between the direction of the incident positron and the thrust axis taken in the direction of the positron jet. Numerical values requested from the authors. Data are normalised to the total expected QED cross section.
The negative kaon electromagnetic form factor has been measured in the space-like q 2 range 0.015–0.10 (GeV/ c ) 2 by the direct scattering of 250 GeV kaons from electrons at the CERN SPS. It is found that the kaon mean square charge radius 〈 r 2 K 〉 = 0.34 ± 0.05 fm 2 . From data collected simultaneously for πe scattering, the difference between the charged pion and kaon mean square radii (which is less sensitive to systematic errors) is found to be 〈 r 2 π 〉 − 〈 r 2 K = 0.1 0 ± 0.045 fm 2 .
Ratio is assumed free of systematic error.
Angular distributions of high-mass jet pairs (180< m 2 J <350 GeV) have been measured in the UA1 experiment at the CERN pp̄ Collider ( s =630 GeV ) . We show that angular distributions are independent of the subprocess centre-of-mass (CM) energy over this range, and use the data to put constraints on the definition of the Q 2 scale. The distribution for the very high mass jet pairs (240< m 2 J <300 GeV) has also been used to obtain a lower limit on the energy scale Λ c of compositeness of quarks. We find Λ c >415 GeV at 95% confidence level.
No description provided.
No description provided.
A high-precision measurement of the differential cross section for Bhabha scattering (e+e−→e+e−) is presented. The measurement was performed with the MAC detector at the PEP storage ring of the Stanford Linear Accelerator Center, at a center-of-mass energy of 29 GeV. Effects due to electroweak interference are observed and agree well with the predictions of the Glashow-Salam-Weinberg model. The agreement between the data and the electroweak prediction rules out substructure of the electron up to mass scales of 1 TeV.
Error contains both statistics and systematics.
No description provided.
No description provided.
We present a measurement of the hadronic structure function F 2 γ ( x , Q 2 ) of the photon in the Q 2 range from 10 to 100 GeV 2 . Data were taken with the PLUTO detector at the e + e - storage ring PETRA. This measurement and previous PLUTO measurements in the Q 2 range of 1.5 to 16 GeV 2 are compared with higher order QCD calculations. The structure function is consistent with the predicted log Q 2 behaviour when charm contributions are subtracted. The x dependence can be well described for 0.1 < x < 0.9 by the regularization scheme of Antoniadis and Grunberg. Within their scheme the data yield a value of Λ MS = 183 + 65/ −40( stat. ) + 46/ −36( sys. ) MeV for the QCD scale parameter.
Data read from graph.
Data read from graph.
Data read from graph.
None
No description provided.
High-precision measurements of electron-positron annihilation into final states of two, three, and four photons are presented. The data were obtained with the MAC detector at the PEP storage ring of the Stanford Linear Accelerator Center, at a center-of-mass energy of 29 GeV. The measured e+e−→γγ differential cross section is used to test the validity of quantum electrodynamics (QED) in this energy range; it agrees well with QED, and the limit on cutoff parameters for the electron propagator is Λ>66 GeV. The measurement of e+e−→γγγ is used to test the QED calculations of order α3 and to search for anomalies that would indicate the existence of new particles; the agreement with QED is excellent and no anomalies are found. Two events from the reaction e+e−→γγγγ are found, in agreement with the QED prediction.
Errors are combined statistical and systematics.
No description provided.
Two 4gamma events are observed corresponding to a cross section of 0.02 PB.
Data on antiproton-proton cross sections at the c.m. energies 200 and 900 GeV are presented. The data were obtained at the CERN antiproton-proton Collider operated in a new pulsed mode in which the same beams were accelerated and decelerated between beam energies of 450 and 100 GeV. The properties of the machine determine the ratio of the luminosities at the two energies to about 1% and thus an accurate measurement of the ratioR of the inelastic cross sections could be made. We findR (=σ900/σ200)=1.20±0.01±0.02, where the first error is statistical and the second systematic. Interpolating existing data to estimateσine1(200 GeV) this measurement ofR leads toσine1(900 GeV)=50.3+0.4+1.0 mb. Using an extrapolated value ofσe1/σtot we estimate the total cross section at 900 GeV to be 65.3±0.7±1.5 mb. Both the inelastic and total cross sections are compatible with a ln2s dependence. Comparisons are made with different fits to the total cross section energy dependence.
Ratio of inelastic cross sections at 900 and 200 Gev.
Estimate of 900 Gev total cross section based on a) interpolation to obtain total cross section at sqrt(s)=200 Gev (51.6 +- 0.4mb.) b) interpolation and extrapolation to obtain the ratio of elastic to total cross sections at 200 & 900 Gev (0.19 +- 0.01 and 0.23 +- 0.01 respectively).