The production properties ofKs0,\(\bar \Lambda\) andK+p interactions at 32 GeV/c are investigated using the final statistics of the experiment. We present total and semi-inclusive cross sections and aver-age multiplicities. Estimates are given of the diffractive dissociation contributions to total and differential cross sections. Thex-,pT−, and transverse mass dependence of inclusive and semi-inclusive distributions is discussed as well as properties of “prompt”Ks0's. The ratio of “prompt”K890+ (K8900) to “prompt”K0 cross sections is measured to be 1.03±0.12 (0.98±0.17). From a comparison of\(\bar \Lambda\) production inK±p interactions at 32 GeV/c, we estimate a strange sea-quark suppression of 0.26 ±0.02. The double differential cross sections ofKs0's is studied as a function of Feynman-x andpT2, and a Triple-Regge fit performed. The data are compared in detail to versions of the Lund-model for low-pT hadronic collisions.
No description provided.
No description provided.
No description provided.
Inclusive production of Δ ++ (1232) with >| t p, Δ ++>|<0.6 (GeV/ c ) 2 is studied in 32 GeV/ c K + p interactions. A systematic comparison with the reaction K + p→pX for >| t p,p>| < 0.6 (GeV/ c ) 2 is made. The production properties of the Δ ++ (1232), of associated π + , π − and K 0 production and of the recoiling system X 0 are investigated in detail. The polarization of the Δ ++ and the energy dependence of the total K + π − cross sections, determined by a Chew-Low extrapolation, are presented and discussed.
No description provided.
No description provided.
No description provided.
Results are presented on inclusive production of resonant and non-resonant particle systems produced inK+p interactions at 32 GeV/c. We compareK*+(892),\(\bar \Sigma ^{ *- } \)(1385), Σ*±(1385), and ϱ0 inclusivex-spectra with the ones of non-resonantKs0π±,\(\bar \Lambda \pi ^ -\), Λπ± and π+π− pairs at the same effective mass. Resonance-particle pairsK*+π±, Σ*+π−, and\(\bar \Sigma ^{ *- } \pi ^ -\) are also studied together with non-resonant tripletsKs0π±, Λπ+π−,\(\bar \Lambda \pi ^ -\pi ^ -\). The invariantx-spectra of resonant particle pairs decrease less rapidly withx then the corresponding non-resonant pairs. Comparison with quark-recombination predictions indicates that the particles, resonances and multiparticle systems are probably created off a single valence quark or diquark instead of carrying all possible valence-quarks.
No description provided.
No description provided.
No description provided.
Data are presented on inclusive π0 production in the forward c.m. hemisphere (xF>0.025) in π+p,K+p andpp interactions at 250 GeV/c. These data are compared to results at other energies and interpreted in terms of quark-parton models.
.
.
.
Cross sections and charged multiplicity distributions for π+p,K+p andpp interactions at 250 GeV/c are presented and compared to each other as well as to earlier (for π+p andK+p lower energy) data. Consistently, the meson-proton (M+p) data have narrower multiplicity distributions and higher average multiplicity thanpp data. Up to our energy, generalized KNO functions describe the energy dependence of the shape of the multiplity distribution with one parameter forM+p and one forpp collisions. If interpreted in terms of negative binomials, the parameter 1/k tends to be slightly lower forM+p than forpp data. For both types of hadron-hadron collision, 1/k is larger than fore+e− andlp collisions.
No description provided.
No description provided.
No description provided.
Inclusive ϱ 0 and φ production is investigated in K + p interactions at 32 GeV/ c . Total and semi-inclusive ϱ 0 and φ cross sections, longitudinal and transverse momentum distributions, including 〈 P T versus x dependence are presented. No evidence for a sea-gull effect is observed. Comparison with quark models strongly suggests the possibility that a large fraction of the ϱ 0 and vector mesons are produced as fragmentation products of the incident particles. Study of uncorrelated π + π − pairs in the ϱ 0 mass range provides possible indirect evidence for the existence of diquarks in the proton.
No description provided.
No description provided.
No description provided.
Differential cross-sections of p-d elastic scattering at large angles ( θ c.m. ⩾ 150°) have been measured in the energy interval 1−3.5 GeV. The results are compared with pole model predictions.
Only stattistical errors are presented.
Only stattistical errors are presented.
Only stattistical errors are presented.
An experimental investigation of the structure of identified quark and gluon jets is presented. Observables related to both the global and internal structure of jets are measured; this allows for test
The measured jet broadening distributions (B) in quark and gluon jets seperately.
Measured distributions of -LN(Y2), where Y2 is the differential one-subjet rate, that is the value of the subjet scale parameter where 2 jets appear from the single jet.
The mean subjet multiplicity (-1) for gluon jets and quark jets for different values of the subject resolution parameter Y0.
A measurement of novel event shapes quantifying the isotropy of collider events is performed in 140 fb$^{-1}$ of proton-proton collisions with $\sqrt s=13$ TeV centre-of-mass energy recorded with the ATLAS detector at CERN's Large Hadron Collider. These event shapes are defined as the Wasserstein distance between collider events and isotropic reference geometries. This distance is evaluated by solving optimal transport problems, using the 'Energy-Mover's Distance'. Isotropic references with cylindrical and circular symmetries are studied, to probe the symmetries of interest at hadron colliders. The novel event-shape observables defined in this way are infrared- and collinear-safe, have improved dynamic range and have greater sensitivity to isotropic radiation patterns than other event shapes. The measured event-shape variables are corrected for detector effects, and presented in inclusive bins of jet multiplicity and the scalar sum of the two leading jets' transverse momenta. The measured distributions are provided as inputs to future Monte Carlo tuning campaigns and other studies probing fundamental properties of QCD and the production of hadronic final states up to the TeV-scale.
IRing2 for HT2>=500 GeV, NJets>=2
IRing2 for HT2>=500 GeV, NJets>=3
IRing2 for HT2>=500 GeV, NJets>=4
$Z$ boson events at the Large Hadron Collider can be selected with high purity and are sensitive to a diverse range of QCD phenomena. As a result, these events are often used to probe the nature of the strong force, improve Monte Carlo event generators, and search for deviations from Standard Model predictions. All previous measurements of $Z$ boson production characterize the event properties using a small number of observables and present the results as differential cross sections in predetermined bins. In this analysis, a machine learning method called OmniFold is used to produce a simultaneous measurement of twenty-four $Z$+jets observables using $139$ fb$^{-1}$ of proton-proton collisions at $\sqrt{s}=13$ TeV collected with the ATLAS detector. Unlike any previous fiducial differential cross-section measurement, this result is presented unbinned as a dataset of particle-level events, allowing for flexible re-use in a variety of contexts and for new observables to be constructed from the twenty-four measured observables.
Differential cross-section in bins of dimuon $p_\text{T}$. The actual measurement is unbinned and available with examples at <a href="https://gitlab.cern.ch/atlas-physics/public/sm-z-jets-omnifold-2024">gitlab.cern.ch/atlas-physics/public/sm-z-jets-omnifold-2024</a>
Differential cross-section in bins of dimuon rapidity. The actual measurement is unbinned and available with examples at <a href="https://gitlab.cern.ch/atlas-physics/public/sm-z-jets-omnifold-2024">gitlab.cern.ch/atlas-physics/public/sm-z-jets-omnifold-2024</a>
Differential cross-section in bins of leading muon $p_\mathrm{T]$. The actual measurement is unbinned and available with examples at <a href="https://gitlab.cern.ch/atlas-physics/public/sm-z-jets-omnifold-2024">gitlab.cern.ch/atlas-physics/public/sm-z-jets-omnifold-2024</a>