The WA94 experiment uses the production of strange particles and antiparticles to investigate the properties of hot hadronic matter created in heavy-ion interactions. Λ, Λ , Ξ − and Ξ + particle yields and transverse mass spectra are presented for pS interactions. These results are compared with those from SS interactions. Our results are also compared with those from pW and SW interactions of the WA85 experiment.
The fit with formula (1/MT**1.5)*D(SIG)/D(MT) = CONST*EXP(MT/SLOPE).
No description provided.
No description provided.
Inclusive Λ production has been studied in K − p interactions at 8.25 GeV/ c using about 69 000 events; the total cross section is found to be 3.35 ± 0.20 mb. A comparison has been made with Σ 0 and Σ(1385) inclusive production. Their influence on the inclusive Λ production is discussed. The inclusive Λ cross section and polarization is interpreted in terms of the triple-Regge model. In the target fragmentation region an effective Regge trajectory is determined which lies closer to the K than to the K ∗ . In the beam fragmentation region the cross-section data indicate an effective Regge trajectory which corresponds to the nucleon, while the polarization data require additional Regge exchanges to be present.
No description provided.
No description provided.
No description provided.
The reaction pp→p f (K + K − K + K − )p s in which the K + K − K + K − system is centrally produced has been studied at 300 GeV/ c . φφ production has been observed and the ratio σ (φK + K − )/ σ ( φφ ) is 1.0±0.3. The cross section for central production of φφ is found to be the same at 300 GeV/ c and 85 GeV/ c . An angular analysis of the φφ system favours J P =2 + over 0 − .
No description provided.
A partial-wave analysis of the K 0 π + π − system from the reaction K − p → K 0 π + π − n has been carried out using data obtained at 8.25 GeV/ c in a high-statistics experiment. A strong signal appears in the 1 + SO + (K ∗ π) wave at the Q 2 mass (≈ 1.4 GeV). The 1 + S0 + (ϱK) wave behaves rather like a background and does not exhibit the characteristics of a resonance. A prominent signal also appears in the 2 + D wave (via K ∗ π and ϱK); it is interpreted as the K ∗ (1430). In the L region (1.6–2.1) GeV, there is evidence for the 3 − K ∗ (1780) while the 2 − wave also gives some contribution.
FULLY CORRECTED CROSS SECTION.
RESONANCE FITS CROSS SECTIONS USING BREIT WIGNER FUNCTION. NOTE THAT FOR THE K*(1780) THE CROSS SECTION DETERMINATION IS STRONGLY DEPENDENT ON THE BACKGROUND ASSUMED WHICH HAS BEEN ONLY SUBTRACTED AT 8.25 GEV.
Strange and multistrange baryon and antibaryon production is a useful probe into the dynamics of the hot hadronic matter created in central heavy ion interactions. Relative production yields and transverse mass spectra are presented for Λ, Λ , Ξ − and Ξ + hyperons produced in central sulphur-tungsten interactions at 200 GeV/ c per nucleon.
Distributions are fitted with (1/MT**1.5)*DN/DMT=CONST*EXP(-MT/SLOPE).
No description provided.
No description provided.
Strange and multistrange baryon production is expected to be enhanced in heavy ion interactions if a phase transition from hadronic matter to a Quark-Gluon Plasma takes place. The production yields of Λ s, Λ s, Ξ − s, and Ξ + s relative to the production of negative particles are presented for sulphur-tungsten interactions at 200 GeV/ c per nucleon. These production yields are compared to those produced in proton-tungsten interactions and the enhancements of strange and multistrange baryons and antibaryons are presented.
Hyperon to negative production ratios with sulphur beam.
Hyperon to negative production ratios with proton beam.
Strange and multistrange baryon enhancements.
Strange baryon and in particular multi-strange baryon production is suggested to be a useful probe in the search for quark gluon plasma formation in heavy ion collisions. We have measured the (Ω − + Ω + ) (Ξ − + Ξ + ) production ratio to be 0.8±0.4 at central rapidity and ϱ T > 1.6 GeV/c.
No description provided.
We present results for the hypercharge exchange reaction K − p→f' λ from a high statistics experiment at 8.25 GeV/ c using the CERN 2m HBC. The total and differential cross sections have been measured; the polarisation of the Λ hyperon and the f' density matrix elements have been calculated as functions of momentum transfer. We also present detailed information on the relative strength of the natural and unnatural parity exchange contributions to the production mechanism.
D-WAVE RELATIVISTIC BREIT-WIGNER RESONANCE PLUS POLYNOMIAL BACKGROUND FIT.
FITTED FOR INDIVIDUAL TP BINS.
No description provided.
Differential cross sections and polarizations are presented for the reactions K − p → Λπ 0 , Λη , Λη ′ at 8.25 GeV/ c incident K − momentum. The data, which come from a high statistics experiment in the CERN 2 m bubble chamber, are compared with previous experimental results on the same reactions and with current theoretical ideas.
No description provided.
No description provided.
No description provided.
A partial wave analysis of the reaction π + n → π + π − π 0 p yields an A 0 2 production cross section of 225 ± 30μb for momentum transfer squared < 1 (GeV/ c ) 2 ; the differential cross-section and density matrix are presented and compared with ω 0 production in the light of theoretical models.
Axis error includes +- 10/10 contribution.
ASSUMING NO POPULATION OF HELICITY 2 DENSITY MATRIX ELEMENTS IN T-CHANNEL FRAME. THIS MM = 1+, 1-, 2+, 2- NOTATION REFERS TO THAT SUM OR DIFFERENCE OF HELICITY M DENSITY MATRIX ELEMENTS CORRESPONDING ASYMPTOTICALLY TO NATURAL (+) OR UNNATURAL (-) PARITY EXCHANGE.