Study on the cross section asymmetry of deuteron photodisintegration induced by low energy polarized γ quanta

Barannik, V.P. ; Gorbenko, V.G. ; Gushchin, V.A. ; et al.
Yad.Fiz. 38 (1983) 1108-1100, 1983.
Inspire Record 1408810 DOI 10.17182/hepdata.17732

Results are presented on measured asymmetry parameter in the cross sections of the deuteron photodesintegration by linearly polarized photon beam in the energy range 40-70 MeV for the proton emission angles of 75 and 90 deg in the c. m. s. The experimental data are compared with the theoretical calculations by Partovi, Arenhovel, as well as with calculations performed within an invariant approach with gauge-invariant amplitudes in the pole approximation. The results of the calculation by Arenhovel and the present calculations satisfactorily agree with the experimental data, while the Partovi theory does not describe the asymmetry parameter measurements for photon energies above 40 MeV

1 data table

No description provided.


Measurement of the polarization parameter P in elastic π+p scattering at 335, 370, and 410 MeV

Bekrenev, V.S. ; Beloglazov, Yu.A. ; Gaditskii, V.G. ; et al.
JETP Lett. 35 (1982) 148, 1982.
Inspire Record 1408359 DOI 10.17182/hepdata.70446

None

7 data tables

No description provided.

No description provided.

No description provided.

More…

Cross-section asymmetry in two-particle photodisintegration of helium-3 by linearly polarized protons

Belyaev, A.A. ; Ganenko, V.B. ; Get'man, V.A. ; et al.
Sov.J.Nucl.Phys. 44 (1986) 181-183, 1986.
Inspire Record 1392511 DOI 10.17182/hepdata.17441

None

2 data tables

No description provided.

No description provided.


Energy dependence of the spin-spin correlation parameter $C_{NN}$ at 50° and 90° c.m. for pp-elastic scattering in the energy range 0.69–0.95 GeV

Efimovyh, V.A. ; Kovalev, A.I. ; Poljakov, V.V. ; et al.
Phys.Lett.B 99 (1981) 28-32, 1981.
Inspire Record 1389635 DOI 10.17182/hepdata.27135

The spin-spin correlation parameter C NN at 50° and 90° c.m. for elastic pp-scattering has been obtained in the energy range 0.69–0.95 GeV. It was found that the parameter C NN (90°) shows resonance-like structure at energies near 700 MeV. Its energy dependence does not agree with Hoshizaki's phase-shift analysis predictions. C NN (50°) agrees well with these predictions and does not show any structure within the accuracy of the measurements.

1 data table

No description provided.


Spin density matrix elements in exclusive $\omega$ electroproduction on $^1$H and $^2$H targets at 27.5 GeV beam energy

The HERMES collaboration Airapetian, A. ; Akopov, N. ; Akopov, Z. ; et al.
Eur.Phys.J.C 74 (2014) 3110, 2014.
Inspire Record 1305286 DOI 10.17182/hepdata.70751

Exclusive electroproduction of $\omega$ mesons on unpolarized hydrogen and deuterium targets is studied in the kinematic region of Q$^2$>1.0 GeV$^2$, 3.0 GeV < W < 6.3 GeV, and -t'< 0.2 GeV$^2$. Results on the angular distribution of the $\omega$ meson, including its decay products, are presented. The data were accumulated with the HERMES forward spectrometer during the 1996-2007 running period using the 27.6 GeV longitudinally polarized electron or positron beam of HERA. The determination of the virtual-photon longitudinal-to-transverse cross-section ratio reveals that a considerable part of the cross section arises from transversely polarized photons. Spin density matrix elements are presented in projections of Q$^2$ or -t'. Violation of s-channel helicity conservation is observed for some of these elements. A sizable contribution from unnatural-parity-exchange amplitudes is found and the phase shift between those amplitudes that describe transverse $\omega$ production by longitudinal and transverse virtual photons, $\gamma^{*}_{L} \to \omega_{T}$ and $\gamma^{*}_{T} \to \omega_{T}$, is determined for the first time. A hierarchy of helicity amplitudes is established, which mainly means that the unnatural-parity-exchange amplitude describing the $\gamma^*_T \to \omega_T$ transition dominates over the two natural-parity-exchange amplitudes describing the $\gamma^*_L \to \omega_L$ and $\gamma^*_T \to \omega_T$ transitions, with the latter two being of similar magnitude. Good agreement is found between the HERMES proton data and results of a pQCD-inspired phenomenological model that includes pion-pole contributions, which are of unnatural parity.

9 data tables

The 23 unpolarized and polarized $\omega$ SDMEs from the proton and deuteron data.

The 23 unpolarized and polarized $\omega$ SDMEs for the proton data in $Q^2$ intervals: $1.00 - 1.57 - 2.55 - 10.00$ GeV$^2$.

The 23 unpolarized and polarized $\omega$ SDMEs for the proton data in $-t'$ intervals: $0.000 - 0.044 - 0.105 - 0.200$ GeV$^2$.

More…

Measurement of the n p total cross section difference Delta(sigma(L))(np) at 1.39-GeV, 1.69-GeV, 1.89-GeV and 1.99-GeV

Sharov, V.I. ; Anischenko, N.G. ; Antonenko, V.G. ; et al.
Eur.Phys.J.C 37 (2004) 79-90, 2004.
Inspire Record 662636 DOI 10.17182/hepdata.43115

New accurate results of the neutron-proton spin-dependent total cross section difference $\Delta\sigma_{\mathrm L}(np)$

2 data tables

Unpolarized total cross sections.

Final results for SIG(NAME=CLL).


Measurements of the total cross section difference Delta(sigma(L)(n p)) at 1.59-GeV, 1.79-GeV and 2.20-GeV.

Sharov, V.I. ; Zaporozhets, S.A. ; Adiasevich, B.P. ; et al.
JINR Rapid Commun. 96 (1999) 5-23, 1999.
Inspire Record 513865 DOI 10.17182/hepdata.43287

New results of the neutron-proton spin-dependent total cross section difference$\Delta\sigma_L(np)$at the neutron beam kinetic energies 1.59, 1.79 and 2.20 GeV ar

2 data tables

Final results from the np data.

Values of the cross section difference at I=0 deduced by combining these npdata with pure pp (I=1) data from other experiments.


Measurement of the total cross-section difference Delta(sigma-L) in n p transmission at 1.19-GeV, 2.49-GeV and 3.65-GeV

Adiasevich, B.P. ; Antonenko, V.G. ; Averichev, S.A. ; et al.
Z.Phys.C 71 (1996) 65-74, 1996.
Inspire Record 416847 DOI 10.17182/hepdata.12108

Results of the total cross section differenceΔσL in anp transmission experiment at 1.19, 2.49 and 3.65 GeV incident neutron beam kinetic energies are presented. Measurements were performed at the Synchrophasotron of the Laboratory of High Energies of the Joint Institute for Nuclear Research in Dubna. Results were obtained with a polarized beam of free quasi-monochromatic neutrons passing through the new Dubna frozen spin proton target. The beam and target polarizations were oriented longitudinally. The present results were obtained at the highest energies of free polarized neutrons that can be reached at present. They extend the energy range of existing results from PSI, LAMPF and Saclay measured between 0.066 and 1.10 GeV. The new results are compared withΔσL(pn) data determined as a difference betweenΔσL(pd) andΔσL(pp) ANL-ZGS measurements. The values ofΔσL for the isospin stateI=0 were deduced using knownpp data.

2 data tables

Errors contain statistical and systematic errors added in quadrature. Axis error includes +- 0.05/0.05 contribution (An additional error due to the extrapolation towards zero solid angle).

No description provided.


Measurement of the tensor analyzing power for the C-12 (d, p) reaction at P(d) = 9.1-GeV/c and zero angle proton emission. (In Russian)

Ableev, V.G. ; Vizireva, L. ; Dzhemuchadze, S.V. ; et al.
Dubna JINR - 4(43)-90 (90,rec.Oct.) 5-9.C, 1990.
Inspire Record 304748 DOI 10.17182/hepdata.48496

None

1 data table

Proton momentum in deuteron rest frame (ANTILAB).


Polarization parameters A(000n) and A(00nn) in elastic proton proton scattering in the energy region 690-MeV to 890-MeV

Vovchenko, V.G. ; Efimovykh, V.A. ; Zhdanov, A.A. ; et al.
Sov.J.Nucl.Phys. 49 (1989) 446-453, 1989.
Inspire Record 292935 DOI 10.17182/hepdata.17325

None

3 data tables

Axis error includes +- 0.0/0.0 contribution (DUE TO QUAZIELASTIC BACKGROUND AND ERRORS IN POLARIZATION OF BEAM AND TARGET).

Axis error includes +- 0.0/0.0 contribution (DUE TO QUAZIELASTIC BACKGROUND AND ERRORS IN POLARIZATION OF BEAM AND TARGET).

Axis error includes +- 0.0/0.0 contribution (DUE TO QUAZIELASTIC BACKGROUND AND ERRORS IN POLARIZATION OF BEAM AND TARGET).