No description provided.
None
No description provided.
No description provided.
No description provided.
None
CHARGED IS CUMULATIVE PI+-, OR K+-, OR P+-.
CHARGED IS CUMULATIVE PI+-, OR K+-, OR P+-.
No description provided.
This paper presents an analysis of the multiplicity distributions of charged particles produced inZ0 hadronic decays in the DELPHI detector. It is based on a sample of 25364 events. The average multiplicity is
Charged particle multiplicity distribution for the raw data in full phase space.
Charged particle multiplicity distribution for full phase space. Errors include systematics. A 2 pct correction for excess electrons from photon conversions is not included. The first two points, at N=2 and 4, were not measured but taken from the Lund PS model.
Charged particle multiplicity distribution for single hemisphere. Errors include systematics. A 2 pct correction for excess electrons from photon conversions is not included.
In four-jet events from e + e − →Z 0 →multihadrons one can separate the three principal contributions from the triple-gluon vertex, double gluon-bremsstrahlung and the secondary quark-antiquark production, using the shape of the two-dimensional angular distributions in the generalized Nachtmann-Reiter angle θ NR ∗ and the opening angle of the secondary jets. Thus one can identify directly the contribution from the triple-gluon vertex without comparison with a specific non-QCD model. Applying this new method to events taken with the DELPHI-detector we get for the ratio of the colour factor N c to the fermionic Casimir operator C F : N c C F = 2.55 ± 0.55 ( stat. ) ± 0.4 ( fragm. + models ) ± 0.2 ( error in bias ) in agreement with the value 2.25 expected in QCD from N c =3 and C F = 4 3 .
NC, CF, and TR are the color factors for SU(3) group.
The inclusive jet cross-section has been measured at the CERN p p Collider ( s = 630 GeV ) as a function of the jet transverse momentum ( p T ) and pseudorapidity ( η ) for p T values up to 180 GeV and for−2< η <2. The results are consistent with leading order QCD calculations, and a lower limit Λ c >825 GeV (95% CL ) is set on the quark compositeness scale Λ c .
No description provided.
No description provided.
The multiplicity distributions of charged particles in restricted rapidity intervals inZ0 hadronic decays measured by the DELPHI detector are presented. The data reveal a shoulder structure, best visible for intervals of intermediate size, i.e. for rapidity limits around ±1.5. The whole set of distributions including the shoulder structure is reproduced by the Lund Parton Shower model. The structure is found to be due to important contributions from 3-and 4-jet events with a hard gluon jet. A different model, based on the concept of independently produced groups of particles, “clans”, fluctuating both in number per event and particle content per clan, has also been used to analyse the present data. The results show that for each interval of rapidity the average number of clans per event is approximately the same as at lower energies.
Data for both hemispheres.
Data for both hemispheres.
Data for both hemispheres.
None
No description provided.
No description provided.
No description provided.
None
No description provided.
No description provided.
No description provided.
Measurements of the cross section and forward-backward asymmetry for the reaction e + e − → μ + μ − using the DELPHI detector at LEP are presented. The data come from a scan around the Z 0 peak at seven centre of mass energies, giving a sample of 3858 events in the polar angle region 22° < θ < 158°. From a fit to the cross section for 43° < θ < 137°, a polar angle region for which the absolute efficiency has been determined, the square root of the product of the Z 0 → e + e − and Z 0 → μ + μ − partial widths is determined to be (Γ e Γ μ ) 1 2 = 85.0 ± 0.9( stat. ) ± 0.8( syst. ) MeV . From this measurement of the partial width, the value of the effective weak mixing angle is determined to be sin 2 ( θ w ) = 0.2267 ± 0.0037 . The ratio of the hadronic to muon pair partial widths is found to be Γ h / Γ μ = 19.89 ± 0.40(stat.) ± 0.19(syst.). The forward-backward asymmetry at the resonance peak energy E CMS = 91.22 GeV is found to be A FB = 0.028 ± 0.020(stat.) ± 0.005(syst.). From a combined fit to the cross section and forward-backward asymmetry data, the products of the electron and muon vector and axial-vector coupling constants are determined to be V e V μ = 0.0024 ± 0.0015(stat.) ± 0.0004(syst.) and A e A μ = 0.253 ± 0.003(stat.) ± 0.003 (syst.). The results are in good agreement with the expectations of the minimal standard model.
Fully corrected cross sections.
Forward-backward asymmetries corrected to full solid angle, but not for cuts on momenta and acollinearity.
Effective weak mixing angle.