Measurement of $Z / \gamma^\ast +jet+X$ angular distributions in $p \bar{p}$ collisions at $\sqrt{s}=1.96$ TeV

The D0 collaboration Abazov, Victor Mukhamedovich ; Abbott, Braden Keim ; Abolins, Maris A. ; et al.
Phys.Lett.B 682 (2010) 370-380, 2010.
Inspire Record 826756 DOI 10.17182/hepdata.52513

We present the first measurements at a hadron collider of differential cross sections for Z+jet+X production in delta phi(Z, jet), |delta y(Z, jet)| and |y_boost(Z, jet)|. Vector boson production in association with jets is an excellent probe of QCD and constitutes the main background to many small cross section processes, such as associated Higgs production. These measurements are crucial tests of the predictions of perturbative QCD and current event generators, which have varied success in describing the data. Using these measurements as inputs in tuning event generators will increase the experimental sensitivity to rare signals.

0 data tables match query

Evidence for color coherence in p anti-p collisions at s**(1/2) = 1.8-TeV

The CDF collaboration Abe, F. ; Albrow, Michael G. ; Amidei, Dante E. ; et al.
Phys.Rev.D 50 (1994) 5562-5579, 1994.
Inspire Record 374155 DOI 10.17182/hepdata.42448

Color coherence effects in pp¯ collisions are observed and studied with CDF, the Collider Detector at the Fermilab Tevatron collider. We demonstrate these effects by measuring spatial correlations between soft and leading jets in multijet events. Variables sensitive to interference are identified by comparing the data to the predictions of various shower Monte Carlo programs that are substantially different with respect to the implementation of coherence.

0 data tables match query

The Center-of-mass angular distribution of prompt photons produced in p anti-p collisions at s**(1/2) = 1.8-TeV

The CDF collaboration Abe, F. ; Albrow, Michael G. ; Amidei, Dante E. ; et al.
Phys.Rev.Lett. 71 (1993) 679-683, 1993.
Inspire Record 354237 DOI 10.17182/hepdata.53953

Data taken with the Collider Detector at Fermilab (CDF) during the 1988–1989 run of the Tevatron are used to measure the distribution of the center-of-mass (rest frame of the initial state partons) angle between isolated prompt photons and the beam direction. The shape of the angular distribution for photon-jet events is found to be significantly different from that observed in dijet data. The QCD predictions show qualitative agreement with the observed prompt photon angular distribution.

0 data tables match query

Measurement of dijet azimuthal decorrelation in pp collisions at sqrt(s) = 8 TeV

The CMS collaboration Khachatryan, Vardan ; Sirunyan, Albert M ; Tumasyan, Armen ; et al.
Eur.Phys.J.C 76 (2016) 536, 2016.
Inspire Record 1421646 DOI 10.17182/hepdata.74207

A measurement of the decorrelation of azimuthal angles between the two jets with the largest transverse momenta is presented for seven regions of leading jet transverse momentum up to 2.2 TeV. The analysis is based on the proton-proton collision data collected with the CMS experiment at a centre-of-mass energy of 8 TeV corresponding to an integrated luminosity of 19.7 inverse femtobarns. The dijet azimuthal decorrelation is caused by the radiation of additional jets and probes the dynamics of multijet production. The results are compared to fixed-order predictions of perturbative quantum chromodynamics (QCD), and to simulations using Monte Carlo event generators that include parton showers, hadronization, and multiparton interactions. Event generators with only two outgoing high transverse momentum partons fail to describe the measurement, even when supplemented with next-to-leading-order QCD corrections and parton showers. Much better agreement is achieved when at least three outgoing partons are complemented through either next-to-leading-order predictions or parton showers. This observation emphasizes the need to improve predictions for multijet production.

0 data tables match query

Measurement of the double-differential inclusive jet cross section in proton-proton collisions at sqrt(s) = 13 TeV

The CMS collaboration Khachatryan, Vardan ; Sirunyan, Albert M ; Tumasyan, Armen ; et al.
Eur.Phys.J.C 76 (2016) 451, 2016.
Inspire Record 1459051 DOI 10.17182/hepdata.73786

A measurement of the double-differential inclusive jet cross section as a function of jet transverse momentum pT and absolute jet rapidity |y| is presented. The analysis is based on proton-proton collisions collected by the CMS experiment at the LHC at a centre-of-mass energy of 13 TeV. The data samples correspond to integrated luminosities of 71 and 44 inverse picobarns for |y| < 3 and 3.2 < |y| < 4.7, respectively. Jets are reconstructed with the anti-kt clustering algorithm for two jet sizes, R, of 0.7 and 0.4, in a phase space region covering jet pT up to 2 TeV and jet rapidity up to |y| = 4.7. Predictions of perturbative quantum chromodynamics at next-to-leading order precision, complemented with electroweak and nonperturbative corrections, are used to compute the absolute scale and the shape of the inclusive jet cross section. The cross section difference in R, when going to a smaller jet size of 0.4, is best described by Monte Carlo event generators with next-to-leading order predictions matched to parton showering, hadronisation, and multiparton interactions. In the phase space accessible with the new data, this measurement provides a first indication that jet physics is as well understood at sqrt(s) = 13 TeV as at smaller centre-of-mass energies.

0 data tables match query

Studies of inclusive four-jet production with two b-tagged jets in proton-proton collisions at 7 TeV

The CMS collaboration Khachatryan, Vardan ; Sirunyan, Albert M ; Tumasyan, Armen ; et al.
Phys.Rev.D 94 (2016) 112005, 2016.
Inspire Record 1486238 DOI 10.17182/hepdata.75375

Measurements are presented of the cross section for the production of at least four jets, of which at least two originate from b quarks, in proton-proton collisions. Data collected with the CMS detector at the LHC at a center-of-mass energy of 7 TeV are used, corresponding to an integrated luminosity of 3 inverse picobarns. The cross section is measured as a function of the jet transverse momentum for pt > 20 GeV, and of the jet pseudorapidity for abs(eta) < 2.4 (b jets), 4.7 (untagged jets). The correlations in azimuthal angle and pt between the jets are also studied. The inclusive cross section is measured to be sigma(pp to 2 b + 2 j + X) = 69 +/- 3 (stat) +/- 24 (syst) nb. The eta and pt distributions of the four jets and the correlations between them are well reproduced by event generators that combine perturbative QCD calculations at next-to-leading-order accuracy with contributions from parton showers and multiparton interactions.

0 data tables match query

Version 2
Measurements of differential cross sections for associated production of a W boson and jets in proton-proton collisions at sqrt(s)=8 TeV

The CMS collaboration Khachatryan, Vardan ; Sirunyan, Albert M ; Tumasyan, Armen ; et al.
Phys.Rev.D 95 (2017) 052002, 2017.
Inspire Record 1491953 DOI 10.17182/hepdata.76995

Differential cross sections for a W boson produced in association with jets are measured in a data sample of proton-proton collisions at a center-of-mass energy of 8 TeV recorded with the CMS detector and corresponding to an integrated luminosity of 19.6 inverse femtobarns. The W bosons are identified through their decay mode W to mu nu. The cross sections are reported as functions of jet multiplicity, transverse momenta, and the scalar sum of jet transverse momenta (HT) for different jet multiplicities. Distributions of the angular correlations between the jets and the muon are examined, as well as the average number of jets as a function of HT and as a function of angular variables. The measured differential cross sections are compared with tree-level and higher-order recent event generators, as well as next-to-leading-order and next-to-next-to-leading-order theoretical predictions. The agreement of the generators with the measurements builds confidence in their use for the simulation of W+jets background processes in searches for new physics at the LHC.

0 data tables match query

Measurements of the differential production cross sections for a Z boson in association with jets in pp collisions at sqrt(s) = 8 TeV

The CMS collaboration Khachatryan, Vardan ; Sirunyan, Albert M ; Tumasyan, Armen ; et al.
JHEP 04 (2017) 022, 2017.
Inspire Record 1497519 DOI 10.17182/hepdata.128149

Cross sections for the production of a Z boson in association with jets in proton-proton collisions at a centre-of-mass energy of sqrt(s) = 8 TeV are measured using a data sample collected by the CMS experiment at the LHC corresponding to 19.6 inverse femtobarns. Differential cross sections are presented as functions of up to three observables that describe the jet kinematics and the jet activity. Correlations between the azimuthal directions and the rapidities of the jets and the Z boson are studied in detail. The predictions of a number of multileg generators with leading or next-to-leading order accuracy are compared with the measurements. The comparison shows the importance of including multi-parton contributions in the matrix elements and the improvement in the predictions when next-to-leading order terms are included.

0 data tables match query

Rapidity distributions in exclusive Z + jet and $\gamma$ + jet events in pp collisions at $\sqrt{s}$=7 TeV

The CMS collaboration Chatrchyan, Serguei ; Khachatryan, Vardan ; Sirunyan, Albert M ; et al.
Phys.Rev.D 88 (2013) 112009, 2013.
Inspire Record 1258128 DOI 10.17182/hepdata.65267

Rapidity distributions are presented for events containing either a Z boson or a photon with a single jet in proton-proton collisions produced at the CERN LHC. The data, collected with the CMS detector at $\sqrt{s}$ = 7 TeV, correspond to an integrated luminosity of 5.0 inverse femtobarns. The individual rapidity distributions of the boson and the jet are consistent within 5% with expectations from perturbative QCD. However, QCD predictions for the sum and the difference in rapidities of the two final-state objects show discrepancies with CMS data. In particular, next-to-leading-order QCD calculations, and two common Monte Carlo event generators using different methods to match matrix-element partons with parton showers, appear inconsistent with the data as well as with each other.

0 data tables match query

Measurement of the triple-differential cross section for photon+jets production in proton-proton collisions at sqrt(s)=7 TeV

The CMS collaboration Chatrchyan, Serguei ; Khachatryan, Vardan ; Sirunyan, Albert M ; et al.
JHEP 06 (2014) 009, 2014.
Inspire Record 1266056 DOI 10.17182/hepdata.64869

A measurement of the triple-differential cross section (sigma as a function of the photon pt and eta and the jet eta) in photon + jets final states using a data sample from proton-proton collisions at sqrt(s) = 7 TeV is presented. This sample corresponds to an integrated luminosity of 2.14 inverse femtobarns collected by the CMS detector at the LHC. Photons and jets are reconstructed within a pseudorapidity range of abs(eta) < 2.5, and are required to have transverse momenta in the range 40 < pt(gamma) < 300 GeV and pt(jet) > 30 GeV, respectively. The measurements are compared to theoretical predictions from the SHERPA leading-order QCD Monte Carlo event generator and the next-to-leading-order perturbative QCD calculation from JETPHOX. The predictions are found to be consistent with the data over most of the examined kinematic region.

0 data tables match query