We have measured the production polarization of 265- and 310-GeV/c Σ− in the inclusive reaction p+Cu→Σ−+X using 400-GeV/c protons. The polarization was analyzed via the asymmetry in the weak decay Σ−→n+π−, and has typical values of +0.20 with respect to the direction of the cross product of the incident-proton and Σ− momenta. Using the spin-precession technique, we have determined the Σ− magnetic moment to be -1.23±0.03±0.03 nuclear magnetons, where the statistical and systematic errors are shown separately.
We have measured the polarization of Λ and Λ hyperons produced by 800 GeV protons on a Be target at a fixed targeting angle of 4.8 mrad. Comparison with previous data at 400 GeV production energy and twice the targeting angle shows no significant energy dependence for the Λ polarization. This is in striking contrast to the energy dependence found for σ + and Ξ − polarizations. We find no evidence for Λ polarization at 800 GeV.
Errors are combined statistics and systematics.
No description provided.
We present the first measurement of the form factor ratios g1/f1 (direct axial-vector to vector), g2/f1 (second class current) and f2/f1 (weak magnetism) for the decay Xi0 -> Sigma+ e- anti-nu/e using the KTeV (E799) beam line and detector at Fermilab. From the Sigma+ polarization measured with the decay Sigma+ -> p pi0 and the e- - anti-nu/e correlation, we measure g1/f1 to be 1.32 +0.21-0.17(stat.) +/- 0.05(syst.), assuming the SU(3)f (flavor) values for g2/f1 and f2/f1. Our results are all consistent with exact SU(3)f symmetry.
Vector(F1) to axial(G1) formfactor ratio. Total systematic error is 0.054.
The polarization of neutral Cascade and anti-Cascade hyperons produced by 800 GeV/c protons on a BeO target at a fixed targeting angle of 4.8 mrad is measured by the KTeV experiment at Fermilab. Our result of 9.7% for the neutral Cascade polarization shows no significant energy dependence when compared to a result obtained at 400 GeV/c production energy and at twice our targeting angle. The polarization of the neutral anti-Cascade is measured for the first time and found to be consistent with zero. We also examine the dependence of polarization on transverse production momentum.
A combination of fifteen top quark mass measurements performed by the ATLAS and CMS experiments at the LHC is presented. The data sets used correspond to an integrated luminosity of up to 5 and 20$^{-1}$ of proton-proton collisions at center-of-mass energies of 7 and 8 TeV, respectively. The combination includes measurements in top quark pair events that exploit both the semileptonic and hadronic decays of the top quark, and a measurement using events enriched in single top quark production via the electroweak $t$-channel. The combination accounts for the correlations between measurements and achieves an improvement in the total uncertainty of 31% relative to the most precise input measurement. The result is $m_\mathrm{t}$ = 172.52 $\pm$ 0.14 (stat) $\pm$ 0.30 (syst) GeV, with a total uncertainty of 0.33 GeV.
A measurement of the total $pp$ cross section at the LHC at $\sqrt{s}=8$ TeV is presented. An integrated luminosity of $500$ $\mu$b$^{-1}$ was accumulated in a special run with high-$\beta^{\star}$ beam optics to measure the differential elastic cross section as a function of the Mandelstam momentum transfer variable $t$. The measurement is performed with the ALFA sub-detector of ATLAS. Using a fit to the differential elastic cross section in the $-t$ range from $0.014$ GeV$^2$ to $0.1$ GeV$^2$ to extrapolate $t\rightarrow 0$, the total cross section, $\sigma_{\mathrm{tot}}(pp\rightarrow X)$, is measured via the optical theorem to be: $\sigma_{\mathrm{tot}}(pp\rightarrow X) = {96.07} \; \pm 0.18 \; ({{stat.}}) \pm 0.85 \; ({{exp.}}) \pm 0.31 \; ({extr.}) \; {mb} \;,$ where the first error is statistical, the second accounts for all experimental systematic uncertainties and the last is related to uncertainties in the extrapolation $t\rightarrow 0$. In addition, the slope of the exponential function describing the elastic cross section at small $t$ is determined to be $B = 19.74 \pm 0.05 \; ({{stat.}}) \pm 0.23 \; ({{syst.}}) \; {GeV}^{-2}$.
The measured differential elastic cross section. In addition to the statistical and total systematic uncertainties, the following 22 systematic shifts are given, which are included in the profile fit with their signs: -- Constraints: Beam optics uncertainty obtained by varying the ALFA constraints in the optics fit -- QScan: Variation by +/- 0.1 % of the quadrupole strength -- Q2: Fit of the strength of Q2 using the best value for the strength of Q1 and Q3 -- Q5Q6: Variation of the strength of Q5 and Q6 by -0.2% as indicated by machine constraints -- MadX: Uncertainty related to the beam transport replacing matrix transport by MadX PTC tracking -- Qmisal: Uncertainty due to the mis-alignment of the quadrupoles in the beam line -- Q1Q3: Propagation of the optics fit uncertainty in the strenght of Q1 and Q3 on the differential elastic cross section -- Aopt: Alignment uncertainty from the optimization procedure -- Offv: Alignment uncertainty related to the vertical beam center offset -- Offh: Alignment uncertainty related to the horizontal beam center offset -- Ang: Alignment uncertainty related to the detector rotation in the x-y plane -- BGn: Uncertainty from the background normalization -- BGs: Uncertainty from the background shape -- MCres: Error from modelling of the detector response -- Slope: Residual dependence on the physics model estimated by varying the nuclear slope in the simulation by +/- 1 GeV^-2 -- Emit: Uncertainty from the emittance used to calculate beam divergence in the simulation -- Unf: Unfolding uncertainty from the data-driven closure test -- Trac: Uncertainty from the variation of the track reconstruction selection cuts -- Xing: Uncertainty from residual crossing angle in the horizontal plane -- Eff: Uncertainty from the reconstruction efficiency -- Lumi: Luminosity uncertainty (+/- 1.5%) -- Ebeam: Uncertainty from the nominal beam energy (+/- 0.65%) Small differences in the values given here compared to the published version are related to insignificant rounding issues.
A search for flavour-changing neutral current (FCNC) events via the coupling of a top quark, a photon, and an up or charm quark is presented using 81 fb$^{-1}$ of proton-proton collision data taken at a centre-of-mass energy of 13 TeV with the ATLAS detector at the LHC. Events with a photon, an electron or muon, a $b$-tagged jet, and missing transverse momentum are selected. A neural network based on kinematic variables differentiates between events from signal and background processes. The data are consistent with the background-only hypothesis, and limits are set on the strength of the $tq\gamma$ coupling in an effective field theory. These are also interpreted as 95% CL upper limits on the cross section for FCNC $t\gamma$ production via a left-handed (right-handed) $tu\gamma$ coupling of 36 fb (78 fb) and on the branching ratio for $t\rightarrow \gamma u$ of $2.8\times 10^{-5}$ ($6.1\times 10^{-5}$). In addition, they are interpreted as 95% CL upper limits on the cross section for FCNC $t\gamma$ production via a left-handed (right-handed) $tc\gamma$ coupling of 40 fb (33 fb) and on the branching ratio for $t\rightarrow \gamma c$ of $22\times 10^{-5}$ ($18\times 10^{-5}$).
Post-fit distributions of a background-only fit to the signal region (SR) and the control regions (CRs) of the NN output in the SR. In addition, the expected signal is overlaid for an effective coupling strength corresponding to the observed limit multiplied by a factor of ten.
Observed (expected) 95 % CL limits on the effective coupling strengths for different vertices and couplings, the production cross section, and the branching ratio. For the former, the energy scale is assumed to be $\Lambda$ = 1 TeV.
Post-fit distributions of a background-only fit to the SR and the CRs of the NN output in the SR for the $tu\gamma$ right-handed coupling. In addition, the expected signal is overlaid for an effective coupling strength corresponding to the observed limit multiplied by a factor of ten.
A search for long-lived particles decaying into hadrons is presented. The analysis uses 139 fb$^{-1}$ of $pp$ collision data collected at $\sqrt{s} = 13$ TeV by the ATLAS detector at the LHC using events that contain multiple energetic jets and a displaced vertex. The search employs dedicated reconstruction techniques that significantly increase the sensitivity to long-lived particles decaying in the ATLAS inner detector. Background estimates for Standard Model processes and instrumental effects are extracted from data. The observed event yields are compatible with those expected from background processes. The results are used to set limits at 95% confidence level on model-independent cross sections for processes beyond the Standard Model, and on scenarios with pair-production of supersymmetric particles with long-lived electroweakinos that decay via a small $R$-parity-violating coupling. The pair-production of electroweakinos with masses below 1.5 TeV is excluded for mean proper lifetimes in the range from 0.03 ns to 1 ns. When produced in the decay of $m(\tilde{g})=2.4$ TeV gluinos, electroweakinos with $m(\tilde\chi^0_1)=1.5$ TeV are excluded with lifetimes in the range of 0.02 ns to 4 ns.
<b>Tables of Yields:</b> <a href="?table=validation_regions_yields_highpt_SR">Validation Regions Summary Yields, High-pT jet selections</a> <a href="?table=validation_regions_yields_trackless_SR">Validiation Regions Summary Yields, Trackless jet selections</a> <a href="?table=yields_highpt_SR_observed">Signal region (and sidebands) observed yields, High-pT jet selections</a> <a href="?table=yields_highpt_SR_expected">Signal region (and sidebands) expected yields, High-pT jet selections</a> <a href="?table=yields_trackless_SR_observed">Signal region (and sidebands) observed yields, Trackless jet selections</a> <a href="?table=yields_trackless_SR_expected">Signal region (and sidebands) expected yields, Trackless jet selections</a> <b>Exclusion Contours:</b> <a href="?table=excl_ewk_exp_nominal">EWK RPV signal; expected, nominal</a> <a href="?table=excl_ewk_exp_up">EWK RPV signal; expected, $+1\sigma$</a> <a href="?table=excl_ewk_exp_down">EWK RPV signal; expected, $-1\sigma$</a> <a href="?table=excl_ewk_obs_nominal">EWK RPV signal; observed, nominal</a> <a href="?table=excl_ewk_obs_up">EWK RPV signal; observed, $+1\sigma$</a> <a href="?table=excl_ewk_obs_down">EWK RPV signal; observed, $-1\sigma$</a> <a href="?table=excl_strong_mgluino_2400_GeV_exp_nominal">Strong RPV signal, m($\tilde{g}$)=2.4 TeV; expected, nominal</a> <a href="?table=excl_strong_mgluino_2400_GeV_exp_up">Strong RPV signal, m($\tilde{g}$)=2.4 TeV; expected, $+1\sigma$</a> <a href="?table=excl_strong_mgluino_2400_GeV_exp_down">Strong RPV signal, m($\tilde{g}$)=2.4 TeV; expected, $-1\sigma$</a> <a href="?table=excl_strong_mgluino_2400_GeV_obs_nominal">Strong RPV signal, m($\tilde{g}$)=2.4 TeV; observed, nominal</a> <a href="?table=excl_strong_mgluino_2400_GeV_obs_up">Strong RPV signal, m($\tilde{g}$)=2.4 TeV; observed, $+1\sigma$</a> <a href="?table=excl_strong_mgluino_2400_GeV_obs_down">Strong RPV signal, m($\tilde{g}$)=2.4 TeV; observed, $-1\sigma$</a> <a href="?table=excl_xsec_ewk">EWK RPV signal; cross-section limits for fixed lifetime values.</a> <a href="?table=excl_xsec_strong_mgluino_2400">Strong RPV signal, m($\tilde{g}$)=2.4 TeV; cross-section limits for fixed lifetime values.</a> <a href="?table=excl_strong_mgluino_2000_GeV_exp_nominal">Strong RPV signal, m($\tilde{g}$)=2.0 TeV; expected, nominal</a> <a href="?table=excl_strong_mgluino_2000_GeV_exp_up">Strong RPV signal, m($\tilde{g}$)=2.0 TeV; expected, $+1\sigma$</a> <a href="?table=excl_strong_mgluino_2000_GeV_exp_down">Strong RPV signal, m($\tilde{g}$)=2.0 TeV; expected, $-1\sigma$</a> <a href="?table=excl_strong_mgluino_2000_GeV_obs_nominal">Strong RPV signal, m($\tilde{g}$)=2.0 TeV; observed, nominal</a> <a href="?table=excl_strong_mgluino_2000_GeV_obs_up">Strong RPV signal, m($\tilde{g}$)=2.0 TeV; observed, $+1\sigma$</a> <a href="?table=excl_strong_mgluino_2000_GeV_obs_down">Strong RPV signal, m($\tilde{g}$)=2.0 TeV; observed, $-1\sigma$</a> <a href="?table=excl_strong_mgluino_2200_GeV_exp_nominal">Strong RPV signal, m($\tilde{g}$)=2.2 TeV; expected, nominal</a> <a href="?table=excl_strong_mgluino_2200_GeV_exp_up">Strong RPV signal, m($\tilde{g}$)=2.2 TeV; expected, $+1\sigma$</a> <a href="?table=excl_strong_mgluino_2200_GeV_exp_down">Strong RPV signal, m($\tilde{g}$)=2.2 TeV; expected, $-1\sigma$</a> <a href="?table=excl_strong_mgluino_2200_GeV_obs_nominal">Strong RPV signal, m($\tilde{g}$)=2.2 TeV; observed, nominal</a> <a href="?table=excl_strong_mgluino_2200_GeV_obs_up">Strong RPV signal, m($\tilde{g}$)=2.2 TeV; observed, $+1\sigma$</a> <a href="?table=excl_strong_mgluino_2200_GeV_obs_down">Strong RPV signal, m($\tilde{g}$)=2.2 TeV; observed, $-1\sigma$</a> <a href="?table=excl_strong_mchi0_50_GeV_exp_nominal">Strong RPV signal, m($\tilde{\chi}^{0}$)=0.1 TeV; expected, nominal</a> <a href="?table=excl_strong_mchi0_50_GeV_exp_up">Strong RPV signal, m($\tilde{\chi}^{0}$)=0.1 TeV; expected, $+1\sigma$</a> <a href="?table=excl_strong_mchi0_50_GeV_exp_down">Strong RPV signal, m($\tilde{\chi}^{0}$)=0.1 TeV; expected, $-1\sigma$</a> <a href="?table=excl_strong_mchi0_50_GeV_obs_nominal">Strong RPV signal, m($\tilde{\chi}^{0}$)=0.1 TeV; observed, nominal</a> <a href="?table=excl_strong_mchi0_50_GeV_obs_up">Strong RPV signal, m($\tilde{\chi}^{0}$)=0.1 TeV; observed, $+1\sigma$</a> <a href="?table=excl_strong_mchi0_50_GeV_obs_down">Strong RPV signal, m($\tilde{\chi}^{0}$)=0.1 TeV; observed, $-1\sigma$</a> <a href="?table=excl_strong_mchi0_450_GeV_exp_nominal">Strong RPV signal, m($\tilde{\chi}^{0}$)=0.5 TeV; expected, nominal</a> <a href="?table=excl_strong_mchi0_450_GeV_exp_up">Strong RPV signal, m($\tilde{\chi}^{0}$)=0.5 TeV; expected, $+1\sigma$</a> <a href="?table=excl_strong_mchi0_450_GeV_exp_down">Strong RPV signal, m($\tilde{\chi}^{0}$)=0.5 TeV; expected, $-1\sigma$</a> <a href="?table=excl_strong_mchi0_450_GeV_obs_nominal">Strong RPV signal, m($\tilde{\chi}^{0}$)=0.5 TeV; observed, nominal</a> <a href="?table=excl_strong_mchi0_450_GeV_obs_up">Strong RPV signal, m($\tilde{\chi}^{0}$)=0.5 TeV; observed, $+1\sigma$</a> <a href="?table=excl_strong_mchi0_450_GeV_obs_down">Strong RPV signal, m($\tilde{\chi}^{0}$)=0.5 TeV; observed, $-1\sigma$</a> <a href="?table=excl_strong_tau_0p01_ns_exp_nominal">Strong RPV signal, $\tau$=0.01 ns; expected, nominal</a> <a href="?table=excl_strong_tau_0p01_ns_exp_up">Strong RPV signal, $\tau$=0.01 ns; expected, $+1\sigma$</a> <a href="?table=excl_strong_tau_0p01_ns_exp_down">Strong RPV signal, $\tau$=0.01 ns; expected, $-1\sigma$</a> <a href="?table=excl_strong_tau_0p01_ns_obs_nominal">Strong RPV signal, $\tau$=0.01 ns; observed, nominal</a> <a href="?table=excl_strong_tau_0p01_ns_obs_up">Strong RPV signal, $\tau$=0.01 ns; observed, $+1\sigma$</a> <a href="?table=excl_strong_tau_0p01_ns_obs_down">Strong RPV signal, $\tau$=0.01 ns; observed, $-1\sigma$</a> <a href="?table=excl_strong_tau_0p1_ns_exp_nominal">Strong RPV signal, $\tau$=0.10 ns; expected, nominal</a> <a href="?table=excl_strong_tau_0p1_ns_exp_up">Strong RPV signal, $\tau$=0.10 ns; expected, $+1\sigma$</a> <a href="?table=excl_strong_tau_0p1_ns_exp_down">Strong RPV signal, $\tau$=0.10 ns; expected, $-1\sigma$</a> <a href="?table=excl_strong_tau_0p1_ns_obs_nominal">Strong RPV signal, $\tau$=0.10 ns; observed, nominal</a> <a href="?table=excl_strong_tau_0p1_ns_obs_up">Strong RPV signal, $\tau$=0.10 ns; observed, $+1\sigma$</a> <a href="?table=excl_strong_tau_0p1_ns_obs_down">Strong RPV signal, $\tau$=0.10 ns; observed, $-1\sigma$</a> <a href="?table=excl_strong_tau_1_ns_exp_nominal">Strong RPV signal, $\tau$=1.00 ns; expected, nominal</a> <a href="?table=excl_strong_tau_1_ns_exp_up">Strong RPV signal, $\tau$=1.00 ns; expected, $+1\sigma$</a> <a href="?table=excl_strong_tau_1_ns_exp_down">Strong RPV signal, $\tau$=1.00 ns; expected, $-1\sigma$</a> <a href="?table=excl_strong_tau_1_ns_obs_nominal">Strong RPV signal, $\tau$=1.00 ns; observed, nominal</a> <a href="?table=excl_strong_tau_1_ns_obs_up">Strong RPV signal, $\tau$=1.00 ns; observed, $+1\sigma$</a> <a href="?table=excl_strong_tau_1_ns_obs_down">Strong RPV signal, $\tau$=1.00 ns; observed, $-1\sigma$</a> <a href="?table=excl_strong_tau_10_ns_exp_nominal">Strong RPV signal, $\tau$=10.00 ns; expected, nominal</a> <a href="?table=excl_strong_tau_10_ns_exp_up">Strong RPV signal, $\tau$=10.00 ns; expected, $+1\sigma$</a> <a href="?table=excl_strong_tau_10_ns_exp_down">Strong RPV signal, $\tau$=10.00 ns; expected, $-1\sigma$</a> <a href="?table=excl_strong_tau_10_ns_obs_nominal">Strong RPV signal, $\tau$=10.00 ns; observed, nominal</a> <a href="?table=excl_strong_tau_10_ns_obs_up">Strong RPV signal, $\tau$=10.00 ns; observed, $+1\sigma$</a> <a href="?table=excl_strong_tau_10_ns_obs_down">Strong RPV signal, $\tau$=10.00 ns; observed, $-1\sigma$</a> <a href="?table=excl_xsec_strong_chi0_1250">Strong RPV signal, m($\tilde{\chi}^0_1$)=1.25 TeV; cross-section limits for fixed lifetime values.</a> <br/><b>Reinterpretation Material:</b> See the attached resource (purple button on the left) or directly <a href="https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/SUSY-2016-08/hepdata_info.pdf">this link</a> for information about acceptance definition and about how to use the efficiency histograms below. SLHA files are also available in the reource page of this HEPData record. <a href="?table=acceptance_highpt_strong"> Acceptance cutflow, High-pT SR, Strong production.</a> <a href="?table=acceptance_trackless_ewk"> Acceptance cutflow, Trackless SR, EWK production.</a> <a href="?table=acceptance_trackless_ewk_hf"> Acceptance cutflow, Trackless SR, EWK production with heavy-flavor.</a> <a href="?table=acceptance_highpt_ewk_hf"> Acceptance cutflow, Trackless SR, EWK production with heavy-flavor.</a> <a href="?table=event_efficiency_HighPt_R_1150_mm">Reinterpretation Material: Event-level Efficiency for HighPt SR selections, R < 1150 mm</a> <a href="?table=event_efficiency_HighPt_R_1150_3870_mm">Reinterpretation Material: Event-level Efficiency for HighPt SR selections, R [1150, 3870] mm</a> <a href="?table=event_efficiency_HighPt_R_3870_mm">Reinterpretation Material: Event-level Efficiency for HighPt SR selections, R > 3870 mm</a> <a href="?table=event_efficiency_Trackless_R_1150_mm">Reinterpretation Material: Event-level Efficiency for Trackless SR selections, R < 1150 mm</a> <a href="?table=event_efficiency_Trackless_R_1150_3870_mm">Reinterpretation Material: Event-level Efficiency for Trackless SR selections, R [1150, 3870] mm</a> <a href="?table=event_efficiency_Trackless_R_3870_mm">Reinterpretation Material: Event-level Efficiency for Trackless SR selections, R > 3870 mm</a> <a href="?table=vertex_efficiency_R_22_mm">Reinterpretation Material: Vertex-level Efficiency for R < 22 mm</a> <a href="?table=vertex_efficiency_R_22_25_mm">Reinterpretation Material: Vertex-level Efficiency for R [22, 25] mm</a> <a href="?table=vertex_efficiency_R_25_29_mm">Reinterpretation Material: Vertex-level Efficiency for R [25, 29] mm</a> <a href="?table=vertex_efficiency_R_29_38_mm">Reinterpretation Material: Vertex-level Efficiency for R [29, 38] mm</a> <a href="?table=vertex_efficiency_R_38_46_mm">Reinterpretation Material: Vertex-level Efficiency for R [38, 46] mm</a> <a href="?table=vertex_efficiency_R_46_73_mm">Reinterpretation Material: Vertex-level Efficiency for R [46, 73] mm</a> <a href="?table=vertex_efficiency_R_73_84_mm">Reinterpretation Material: Vertex-level Efficiency for R [73, 84] mm</a> <a href="?table=vertex_efficiency_R_84_111_mm">Reinterpretation Material: Vertex-level Efficiency for R [84, 111] mm</a> <a href="?table=vertex_efficiency_R_111_120_mm">Reinterpretation Material: Vertex-level Efficiency for R [111, 120] mm</a> <a href="?table=vertex_efficiency_R_120_145_mm">Reinterpretation Material: Vertex-level Efficiency for R [120, 145] mm</a> <a href="?table=vertex_efficiency_R_145_180_mm">Reinterpretation Material: Vertex-level Efficiency for R [145, 180] mm</a> <a href="?table=vertex_efficiency_R_180_300_mm">Reinterpretation Material: Vertex-level Efficiency for R [180, 300] mm</a> <br/><b>Cutflow Tables:</b> <a href="?table=cutflow_highpt_strong"> Cutflow (Acceptance x Efficiency), High-pT SR, Strong production.</a> <a href="?table=cutflow_trackless_ewk"> Cutflow (Acceptance x Efficiency), Trackless SR, EWK production.</a> <a href="?table=cutflow_trackless_ewk_hf"> Cutflow (Acceptance x Efficiency), Trackless SR, EWK production with heavy-flavor quarks.</a> <a href="?table=cutflow_highpt_ewk_hf"> Cutflow (Acceptance x Efficiency), High-pT SR, EWK production with heavy-flavor quarks.</a>
Two-dimensional distribution of the invariant mass $m_{DV}$ and the track multiplicity in the High-pT jet SR for expected signal events in the strong gluino pair pair production model with m(gluino)=1.8 TeV, m(chi0)=0.2 TeV, tau(chi0)=0.1 ns
Two-dimensional distribution of the invariant mass $m_{DV}$ and the track multiplicity in the Trackless jet SR for expected signal events in the electroweak pair production model
A search for excited electrons produced in $pp$ collisions at $\sqrt{s} = 13$ TeV via a contact interaction $q\bar{q} \to ee^*$ is presented. The search uses 36.1 fb$^{-1}$ of data collected in 2015 and 2016 by the ATLAS experiment at the Large Hadron Collider. Decays of the excited electron via a contact interaction into an electron and a pair of quarks ($eq\bar{q}$) are targeted in final states with two electrons and two hadronic jets, and decays via a gauge interaction into a neutrino and a $W$ boson ($\nu W$) are probed in final states with an electron, missing transverse momentum, and a large-radius jet consistent with a hadronically decaying $W$ boson. No significant excess is observed over the expected backgrounds. Upper limits are calculated for the $pp \to ee^* \to eeq\bar{q}$ and $pp \to ee^* \to e\nu W$ production cross sections as a function of the excited electron mass $m_{e^*}$ at 95% confidence level. The limits are translated into lower bounds on the compositeness scale parameter $\Lambda$ of the model as a function of $m_{e^*}$. For $m_{e^*} < 0.5$ TeV, the lower bound for $\Lambda$ is 11 TeV. In the special case of $m_{e^*} = \Lambda$, the values of $m_{e^*} < 4.8$ TeV are excluded. The presented limits on $\Lambda$ are more stringent than those obtained in previous searches.
A search for the production of three massive vector bosons in proton--proton collisions is performed using data at $\sqrt{s}=13\,TeV$ recorded with the ATLAS detector at the Large Hadron Collider in the years 2015--2017, corresponding to an integrated luminosity of $79.8\,\text{fb}^{-1}$. Events with two same-sign leptons $\ell$ (electrons or muons) and at least two reconstructed jets are selected to search for $WWW\to\ell\nu\ell\nu qq$. Events with three leptons without any same-flavour opposite-sign lepton pairs are used to search for $WWW\to\ell\nu\ell\nu\ell\nu$, while events with three leptons and at least one same-flavour opposite-sign lepton pair and one or more reconstructed jets are used to search for $WWZ\to\ell\nu qq \ell\ell$. Finally, events with four leptons are analysed to search for $WWZ\to\ell\nu\ell\nu\ell\ell$ and $WZZ\to qq \ell\ell\ell\ell$. Evidence for the joint production of three massive vector bosons is observed with a significance of 4.0 standard deviations, where the expectation is 3.1 standard deviations.