Polarization and differential cross-section data at 16 momenta between 0.86 and 2.74 GeV/ c are presented. (Preliminary data on some of the momenta have been published earlier.) In an energy-independent phase-shift analysis from threshold up to 2.5 GeV/ c , resonant-like as well as non-resonant solutions are found for the P 3 wave. An helicity flip-non-flip decomposition of the partial waves partly supports the indications found in the analyses of other reactions that the pomeron is built up mainly from s -channel helicity non-flip contributions.
No description provided.
No description provided.
No description provided.
A study of K + p interactions at 4.6 GeV/ c leading to single-pion production is presented. Cross sections for the final states KΔ, K ∗ (891)p, K ∗ (1420)p are given. Comparison of the results of this study with published K − p and K − n data at the same momentum indicates that corresponding K − cross sections are significantly smaller, but other features such as momentum transfer distributions and density matrix elements are very similar.
No description provided.
No description provided.
NORMALIZATION...FROM MASS-CUT BUT RENORMALIZED TO GIVE SAME INTEGERATED CROSS-SECTION AS OVERALL BREIT-WIGNER FIT.
Data on p p annihilations at rest into K 1 0 K 1 0 ω 0 and K + K − ω 0 are discuss New measurements for the mass, the width and the branching ratio of the ω 0 are presented. Evidence for quasi two-body annihilations p p → ϕπ, p ̄ p → S ∗ π is discussed.
PRODUCTION RATE FOR ANNIHILATION AT REST.
The absolute luminosity of the CERN Intersecting Storage Rings has been determined by the Van der Meer method. Combining the measurement with small angle proton-proton elastic events, we find σ elastic = (6.8±0.6)mb.
No description provided.
Proton-proton total cross-sections have been measured at nine different energies between 179 and 555 MeV (607 and 1162 MeV/ c ) with a typical accuracy of 0.9%. The accuracy is limited by a poor knowledge of the Coulomb-nuclear interference region in elastic scattering.
No description provided.
Previous measurements of the cross section asymmetry for single π + production on protons with linearly polarized photons of 3.4 GeV have been extended to momentum transfers within the forward peak, i.e. − = 0.0026, 0.006 and 0.01 (GeV/ c ) 2 . The results are in good agreement with pion exchange models.
Axis error includes +- 6/6 contribution.
Polarization and differential cross-section data for elastic scattering of positive pions on protons between 0.82 and 2.74 GeV/ c are presented. A dip in the polarization, at constant u ≈ −0.65 GeV 2 , is observed. The data are compared with published phase-shift analyses.
No description provided.
No description provided.
No description provided.
Small angle elastic scattering events have been observed at the CERN Intersecting Storage Rings. Directions of both particles as well as the collision vertex are reconstructed with the help of four sets of spark chambers, two for each of the two arms. The elastic nature of the events is demonstrated by a collinearity requirement. We find values for the (diffraction) slope parameter in disagreement with the simple linear extrapolation of lower energy (Surpukov) data.
NUMBER OF EVENTS 87364.
NUMBER OF EVENTS 8305.
No description provided.
We have measured the asymmetry of the cross section for γp→π+n from a polarized target at 5 and 16 GeV. The range of four-momentum transfer was 0.02<~−t<~1.0 GeV2. The π+ mesons were produced in a polarized butanol target and detected with the Stanford Linear Accelerator Center 20−GeVc spectrometer. A sizable asymmetry was found at both 5 and 16 GeV, a typical value being -0.6 near −t=0.3 GeV2. A small amount of data on the asymmetry of other photoproduction processes was also obtained.
No description provided.
No description provided.
No description provided.
We have measured elastic electron-proton scattering cross sections in the range of four-momentum transfers from 7 F−2[0.27 (GeV/c)2] to 150 F−2 [5.84 (GeV/c)2] and at scattered electron angles of between 20° and 34° in the laboratory. The estimated errors in the cross sections range from ±2.1% at the lowest momentum transfer to ±9.6% at the highest. Both the scattered electron and the recoil proton were detected, resulting in an overdetermination of the kinematics. When the constraint of a coincident proton is removed, there is no significant change in the estimated cross sections.
No description provided.
No description provided.
No description provided.