Elastic electron-proton scattering cross sections have been measured using the internal beam of the 6-BeV Cambridge Electron Accelerator at laboratory scattering angles between 31° and 90° for values of the four-momentum transfer squared ranging from q2=0.389 to 6.81 (BeV/c)2 (q2=10 to 175F−2). Incident electron energies ranged from 1.0 to 6.0 BeV. Scattered electrons from an internal liquid-hydrogen target were momentum-analyzed using a single quadrupole spectrometer capable of momentum analysis up to 3.0 BeV/c. Čerenkov and shower counters were used to help reject pion and low-energy background. The cross sections presented are absolute cross sections with experimental errors ranging from 6.8% to 20%. Separation of proton electromagnetic form factors have been made for all but the two highest momentum transfer points, using the Rosenbluth formula. Both form factors, GEp and GMp, were observed to continue to decrease as the momentum transfer increases. An upper limit to the possible asymptotic values of the proton electromagnetic form factors has been established.
No description provided.
No description provided.
No description provided.
None
No description provided.
The cross section for the reaction [...] was measured at the Caltech synchrotron. The [...] was detected by measuring its decay gamma rays with two lead glass, total absorption Cherenkov counters. The results are three angular distributions at k = 911, 1180, and 1390 MeV, at forward angles from 3 degrees to 90 degrees. The deuteron/proton ratio differs significantly from 2.0, but final state effects from the use of a deuteron target make impossible quantitative conclusions about the neutron cross section.
No description provided.
No description provided.
No description provided.
A total of 24 360 events having two charged particles in the final state from π−+p interactions at an incident π− momentum of 2.7 GeVc have been analyzed. The final states π−π+n and π−π0p are found to be dominated by rho-meson production, and in addition, significant N*(1238) production is seen. The partial cross sections for the dominant resonant channels are σ=(pρ−)=(1.3±0.2) mb, σ(nρ0)=(2.3±0.2) mb, and σ[π−N*+(→pπ0)]=(0.5±0.2) mb. The production of the ρ− and ρ0 and the decay of the ρ− agree very well with the predictions of an absorption-modified one-pion-exchange model. The production angular distributions of the ρ0 and ρ− follow an exponential of the form Ae+Bt. The results from a least-squares fit give B(ρ−)=9.32±0.08 (GeVc)−2, B(ρ0)=10.26±0.06 (GeVc)−2. A similar analysis for the elastic-scattering events gave B(el)=7.77±0.05 (GeVc)−2. The ρ0 decay distributions are asymmetric and they have been analyzed using a simple model which includes S−P-wave interference. No clear evidence is seen for a T=0, J=0 resonance at a mass near that of the ρ. The N*(1238) resonance production is found to be in agreement with the ρ-exchange model of Stodolsky and Sakurai. Indication of other resonance production with small cross section is seen, such as A1 and A2 production in the multiple missing neutral events. The masses and widths of the ρ0 and ρ− as a function of the four-momentum transfer squared to the nucleon have been determined.
No description provided.
The differential cross section for the reaction γ+p→π++n was measured at 32 laboratory photon energies between 589 and 1269 MeV at the Caltech synchrotron. At each energy, data have been obtained at typically 15π+ angles between 6° and 90° in the center-of-mass (c.m.) system. A magnetic spectrometer was used to detect the π+ photoproduced in a liquid-hydrogen target. Two Cerenkov counters were used to reject background of positrons and protons. The data clearly show the presence of a pole in the production amplitude due to one-pion exchange. Moravcsik fits to the angular distributions, including data from another experiment carried out by Thiessen, are presented. Extrapolation of these fits to the pole gives a value for the pion-nucleon coupling constant of 14.2±1.7, which is consistent with the accepted value. The "second" and "third" pion-nucleon resonances are evident as peaks in the total cross section and as changes in the shape of the angular distributions. At the third resonance, there is evidence for both a D52 and an F52 amplitude. The absence of large variations with energy in the 0° and 180° cross sections implies that the second and third resonances are mostly produced from an initial state with helicity 32.
No description provided.
No description provided.
No description provided.
An analysis of π−p two-prong interactions at 4.16 GeV/c is presented. The total two-prong cross section is 19.11±0.40 mb, based on 33 672 events. The elastic-scattering differential cross section shows an exponential behavior, Kexp(−AΔ2). With A=7.36±0.14 GeV−2, the "absorption parameters" are derived as C+=0.846±0.017 and γ+=0.040±0.001. The final-state π−π0p exhibits a strong ρ−, and the π−π+n a strong ρ0 and f0. The partial cross sections for the dominant resonant channels pρ−, π−Δ+(1236) (→pπ0), ρ0n, and f0n are 0.59±0.03, 0.17±0.01, 1.15±0.05, and 0.53±0.06 mb, respectively. The ρ− production and decay angular distributions do not agree with the predictions of the absorption-modified one-pion-exchange model. However, an inclusion of the contribution from ω exchange adequately accounts for the discrepancy. The ρ0 asymmetry is interpreted as a result of an interference of the resonant P wave and isospin-zero S wave, and the corresponding spin-density matrix elements are obtained. In the final state π−p+neutrals, a clear peak for the η meson and some evidence for the ω meson are seen.
Axis error includes +- 0.0/0.0 contribution (?////EVENT NORMALIZATION).
Cross section angular distributions for [...] photoproduction from hydrogen were measured for 28 laboratory photon energies from 574 to 1211 MeV. At most energies, the [...] center of mass angle was varied from 60[degrees] to 170[degrees] in steps of 10[degrees]. A magnetic spectrometer was used to measure the momentum and angle of the recoil proton. A scintillation counter hodoscope with lead convertors was used to detect the presence of at least one of the [...] decay gamma rays. For a majority of the measurements the [...] rates were separated from a contamination of pi pair rates using the difference in their distribution among the gamma counters. For the remainder of the measurements, charged pi pairs were eliminated using veto counters in front of the gamma counters. Internal inconsistency and comparison with other experiments indicate that the veto data are 10 to 15% low near 90[degrees] in the region of 750 MeV. The remainder of the data show good internal consistency and fair agreement with data of other experiments. The results show a peak at 140[degrees] near 1050 MeV which had been expected but not previously measured. Comparison of the backward angle data with that from experiments measuring cross sections very near 180[degrees] indicates either an inconsistency between experiments or a rapid drop in the cross section near 180[degrees] in the region around 800 MeV.
No description provided.
No description provided.
No description provided.
The cross section for the elastic scattering of positrons from protons has been compared with the corresponding electron cross section using secondary beams derived from the photon beam of the Cornell 2-GeV synchrotron. The paths of the scattered leptons (positrons or electrons) and recoil protons were recorded in spark chambers and were used to determine the incident lepton energy of each event. Elastic scatterings were identified by requiring coplanarity and a fit to the scattering kinematics. The detection system was sensitive to scattering angles between 25° and 75°. The ratio of the positron cross section to the corresponding electron cross section was 0.992±0.017 at 800 MeV and 0.987±0.019 at 1200 MeV. No significant variation of the ratio with angle of scattering was found.
No description provided.
No description provided.
The polarization of recoiling protons from the photoproduction of π0 mesons on liquid hydrogen has been measured for primary photon energies between 500 and 1000 MeV over a range of π0 c.m. angles from 55° to 130°. The results show structure not observed previously in experiments of less precision. In particular, the polarization at 90° c.m. is close to zero at a primary photon energy of 900 MeV. Also, a strong dependence of polarization on π0 c.m. angle between 600 and 900 MeV was observed. A subsidiary measurement of the polarization of the recoil protons from elastic e−p scattering at 900 MeV and q2=10 F−2 gave a value (1.3±2.0)%.
No description provided.
No description provided.
No description provided.
π±p elastic differential cross sections in the momentum range 1.72-2.80 GeV/c have been measured at the proton synchrotron "NIMROD" of the Rutherford High Energy Laboratory. The results are tabulated, and analyses of the differential cross sections employing optical models and Legendre polynomial expansions are advanced. A critical discussion of a recent interpretation of differential-cross-section structure in terms of interference between resonant and background amplitudes is presented.
No description provided.
No description provided.
No description provided.