Version 2
Measurement of the $Z(\rightarrow\ell^+\ell^-)\gamma$ production cross-section in $pp$ collisions at $\sqrt{s} =13$ TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abbott, Dale Charles ; et al.
JHEP 03 (2020) 054, 2020.
Inspire Record 1764342 DOI 10.17182/hepdata.89875

The production of a prompt photon in association with a $Z$ boson is studied in proton-proton collisions at a centre-of-mass energy $\sqrt{s} =$ 13 TeV. The analysis uses a data sample with an integrated luminosity of 139 fb$^{-1}$ collected by the ATLAS detector at the LHC from 2015 to 2018. The production cross-section for the process $pp \rightarrow \ell^+\ell^-\gamma+X$ ($\ell = e, \mu$) is measured within a fiducial phase-space region defined by kinematic requirements on the photon and the leptons, and by isolation requirements on the photon. An experimental precision of 2.9% is achieved for the fiducial cross-section. Differential cross-sections are measured as a function of each of six kinematic variables characterising the $\ell^+\ell^-\gamma$ system. The data are compared with theoretical predictions based on next-to-leading-order and next-to-next-to-leading-order perturbative QCD calculations. The impact of next-to-leading-order electroweak corrections is also considered.

14 data tables

The measured fiducial cross section. "Uncor" uncertainty includes all systematic uncertainties that are uncorrelated between electron and muon channels such as the uncertainty on the electron identification efficiency and the uncorrelated component of the background uncertainties. The parton-to-particle correction factor $C_{theory}$ is the ratio of the cross-section predicted by Sherpa LO samples at particle level within the fiducial phase-space region defined in Table 4 to the predicted cross-section at parton level within the same fiducial region but with the smooth-cone isolation prescription defined above replacing the particle-level photon isolation criterion, and with Born-level leptons in place of dressed leptons. This correction should be applied on fixed order parton-level calculations. The systematic uncertainty is evaluated from a comparison with the correction factor obtained using events generated with SHERPA 2.2.2 at NLO. In the case that the calculations are valid for dressed leptons, a modified correction factor excluding the Born-to-dressed lepton correction should be applied instead. This correction only takes into account the particle-level isolation criteria, and is provided separately here. The Sherpa 2.2.8 NLO cross-sections given below include a small contribution from EW $Z\gamma jj$ production of 4.57 fb.

The measured fiducial cross section. "Uncor" uncertainty includes all systematic uncertainties that are uncorrelated between electron and muon channels such as the uncertainty on the electron identification efficiency and the uncorrelated component of the background uncertainties. The parton-to-particle correction factor $C_{theory}$ is the ratio of the cross-section predicted by Sherpa LO samples at particle level within the fiducial phase-space region defined in Table 4 to the predicted cross-section at parton level within the same fiducial region but with the smooth-cone isolation prescription defined above replacing the particle-level photon isolation criterion, and with Born-level leptons in place of dressed leptons. This correction should be applied on fixed order parton-level calculations. The systematic uncertainty is evaluated from a comparison with the correction factor obtained using events generated with Sherpa 2.2.2 at NLO. In the case that the calculations are valid for dressed leptons, a modified correction factor excluding the Born-to-dressed lepton correction should be applied instead. This correction only takes into account the particle-level isolation criteria, and is provided separately here. The Sherpa 2.2.8 NLO cross-sections given below include a small contribution from EW $Z\gamma jj$ production of 4.57 fb.

The measured fiducial cross section vs $E_{\mathrm{T}}^\gamma$. The central values are provided along with the statistical and systematic uncertainties together with the sign information. The statistical and "Uncor" uncertainty should be treated as uncorrelated bin-to-bin, while the rest are correlated between bins, and they are written as signed NP variations. The parton-to-particle correction factor $C_{theory}$ is the ratio of the cross-section predicted by Sherpa LO samples at particle level within the fiducial phase-space region defined in Table 4 to the predicted cross-section at parton level within the same fiducial region but with the smooth-cone isolation prescription defined above replacing the particle-level photon isolation criterion, and with Born-level leptons in place of dressed leptons. This correction should be applied on fixed order parton-level calculations. The systematic uncertainty is evaluated from a comparison with the correction factor obtained using events generated with SHERPA 2.2.2 at NLO. In the case that the calculations are valid for dressed leptons, a modified correction factor excluding the Born-to-dressed lepton correction should be applied instead. This correction only takes into account the particle-level isolation criteria, and is provided separately here. The Sherpa 2.2.8 NLO cross-sections given below include a small contribution from EW $Z\gamma jj$ production.

More…

Dijet production in $\sqrt{s}=7$ TeV $pp$ collisions with large rapidity gaps at the ATLAS experiment

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abdallah, Jalal ; et al.
Phys.Lett.B 754 (2016) 214-234, 2016.
Inspire Record 1402356 DOI 10.17182/hepdata.70762

A $6.8 \ {\rm nb^{-1}}$ sample of $pp$ collision data collected under low-luminosity conditions at $\sqrt{s} = 7$ TeV by the ATLAS detector at the Large Hadron Collider is used to study diffractive dijet production. Events containing at least two jets with $p_\mathrm{T} > 20$ GeV are selected and analysed in terms of variables which discriminate between diffractive and non-diffractive processes. Cross sections are measured differentially in $\Delta\eta^F$, the size of the observable forward region of pseudorapidity which is devoid of hadronic activity, and in an estimator, $\tilde{\xi}$, of the fractional momentum loss of the proton assuming single diffractive dissociation ($pp \rightarrow pX$). Model comparisons indicate a dominant non-diffractive contribution up to moderately large $\Delta\eta^F$ and small $\tilde{\xi}$, with a diffractive contribution which is significant at the highest $\Delta\eta^F$ and the lowest $\tilde{\xi}$. The rapidity-gap survival probability is estimated from comparisons of the data in this latter region with predictions based on diffractive parton distribution functions.

6 data tables

The cross section differential in the forward rapidity gap size, DELTA(C=RAPGAP), for events with at least two jets of pt > 20 GeV found by the anti-kt jet algorithm with R=0.6.

The cross section differential in the forward rapidity gap size, DELTA(C=RAPGAP), for events with at least two jets of pt > 20 GeV found by the anti-kt jet algorithm with R=0.4.

The cross section differential in the fraction of the proton four-momentum carried by the Pomeron, LOG10(C=XI), for events with at least two jets of pt > 20 GeV found by the anti-kt jet algorithm with R=0.6.

More…

$Z$ boson production in $p+$Pb collisions at $\sqrt{s_{NN}}=5.02$ TeV measured with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abdallah, Jalal ; et al.
Phys.Rev.C 92 (2015) 044915, 2015.
Inspire Record 1384272 DOI 10.17182/hepdata.69247

The ATLAS Collaboration has measured the inclusive production of $Z$ bosons via their decays into electron and muon pairs in $p+$Pb collisions at $\sqrt{s_{NN}}=5.02$ TeV at the Large Hadron Collider. The measurements are made using data corresponding to integrated luminosities of 29.4 nb$^{-1}$ and 28.1 nb$^{-1}$ for $Z \rightarrow ee$ and $Z \rightarrow \mu\mu$, respectively. The results from the two channels are consistent and combined to obtain a cross section times the $Z \rightarrow \ell\ell$ branching ratio, integrated over the rapidity region $|y^{*}_{Z}|<3.5$, of 139.8 $\pm$ 4.8 (stat.) $\pm$ 6.2 (syst.) $\pm$ 3.8 (lumi.) nb. Differential cross sections are presented as functions of the $Z$ boson rapidity and transverse momentum, and compared with models based on parton distributions both with and without nuclear corrections. The centrality dependence of $Z$ boson production in $p+$Pb collisions is measured and analyzed within the framework of a standard Glauber model and the model's extension for fluctuations of the underlying nucleon-nucleon scattering cross section.

7 data tables

The centrality bias factors derived from data as explained in the text. Model calculations shown in the Figure are found in arXiv:1412.0976.

The differential $Z$ boson production cross section, $d\sigma/dy^\mathrm{*}_{Z}$, as a function of $Z$ boson rapidity in the center-of-mass frame $y^\mathrm{*}_{Z}$, for $Z\rightarrow ee$, $Z\rightarrow\mu\mu$, and their combination $Z\rightarrow\ell\ell$.

The differential cross section of $Z$ boson production multiplied by the Bjorken $x$ of the parton in the lead nucleus, $x_{Pb} d\sigma /dx_{Pb}$, as a function of $x_{Pb}$.

More…

Inclusive D*+- meson cross sections and D*+- jet correlations in photoproduction at HERA.

The H1 collaboration Aktas, A. ; Andreev, V. ; Anthonis, T. ; et al.
Eur.Phys.J.C 50 (2007) 251-267, 2007.
Inspire Record 723915 DOI 10.17182/hepdata.45640

Differential photoproduction cross sections are measured for events containing D* mesons. The data were taken with the H1 detector at the ep collider HERA and correspond to an integrated luminosity of 51.1 pb-1. The kinematic region covers small photon virtualities Q^2 &lt; 0.01 GeV^2 and photon-proton centre-of-mass energies of 171 &lt; W_gammap &lt; 256 GeV. The details of the heavy quark production process are further investigated in events with one or two jets in addition to the D* meson. Differential cross sections for D* jet production are determined and the correlations between the D* meson and the jet(s) are studied. The results are compared with perturbative QCD predictions applying collinear- or kt -factorisation.

15 data tables

Integrated cross section in the visible range for inclusive D* production photoproduction.

Integrated cross section in the visible range for D*+ other jet production photoproduction.

Integrated cross section in the visible range for D* tagged dijet photoproduction.

More…

Measurement of charm and beauty dijet cross sections in photoproduction at HERA using the H1 vertex detector.

The H1 collaboration Aktas, A. ; Andreev, V. ; Anthonis, T. ; et al.
Eur.Phys.J.C 47 (2006) 597-610, 2006.
Inspire Record 716144 DOI 10.17182/hepdata.45700

A measurement of charm and beauty dijet photoproduction cross sections at the ep collider HERA is presented. Events are selected with two or more jets of transverse momentum $p_t^{jet}_{1(2)}>11(8)$ GeV in the central range of pseudo-rapidity $-0.9<\eta^{jet}_{1(2)}<1.3$. The fractions of events containing charm and beauty quarks are determined using a method based on the impact parameter, in the transverse plane, of tracks to the primary vertex, as measured by the H1 central vertex detector. Differential dijet cross sections for charm and beauty, and their relative contributions to the flavour inclusive dijet photoproduction cross section, are measured as a function of the transverse momentum of the leading jet, the average pseudo-rapidity of the two jets and the observable $x_{\gamma}^{obs}$. Taking into account the theoretical uncertainties, the charm cross sections are consistent with a QCD calculation in next-to-leading order, while the predicted cross sections for beauty production are somewhat lower than the measurement.

22 data tables

Total dijet CHARM cross section in the defined kinematic range.

Total dijet BOTTOM cross section in the defined kinematic range.

Measured CHARM cross section as a function of PT.

More…

Forward jet production in deep inelastic scattering at HERA.

The H1 collaboration Aktas, A. ; Andreev, V. ; Anthonis, T. ; et al.
Eur.Phys.J.C 46 (2006) 27-42, 2006.
Inspire Record 690939 DOI 10.17182/hepdata.45860

The production of forward jets has been measured in deep inelastic ep collisions at HERA. The results are presented in terms of single differential cross sections as a function of the Bjorken scaling variable (x_{Bj}) and as triple differential cross sections d^3 \sigma / dx_{Bj} dQ^2 dp_{t,jet}^2, where Q^2 is the four momentum transfer squared and p_{t,jet}^2 is the squared transverse momentum of the forward jet. Also cross sections for events with a di-jet system in addition to the forward jet are measured as a function of the rapidity separation between the forward jet and the two additional jets. The measurements are compared with next-to-leading order QCD calculations and with the predictions of various QCD-based models.

7 data tables

Single differential forward jet cross section as a function of Bjorken X.

Triple differential cross section.

Triple differential cross section.

More…

Measurement of dijet cross sections in e p interactions with a leading neutron at HERA.

The H1 collaboration Aktas, A. ; Andreev, V. ; Anthonis, T. ; et al.
Eur.Phys.J.C 41 (2005) 273-286, 2005.
Inspire Record 669251 DOI 10.17182/hepdata.46199

Measurements are reported of the production of dijet events with a leading neutron in ep interactions at HERA. Differential cross sections for photoproduction and deep inelastic scattering are presented as a function of several kinematic variables. Leading order QCD simulation programs are compared with the measurements. Models in which the real or virtual photon interacts with a parton of an exchanged pion are able to describe the data. Next-to-leading order perturbative QCD calculations based on pion exchange are found to be in good agreement with the measured cross sections. The fraction of leading neutron dijet events with respect to all dijet events is also determined. The dijet events with a leading neutron have a lower fraction of resolved photon processes than do the inclusive dijet data.

14 data tables

Differential e p photoproduction cross section as a function of the jet transverse energy.

Differential e p photoproduction cross section as a function of JET pseudorapidity.

Differential e p photoproduction cross section as a function of JET X(C=GAMMA).

More…

Measurement of prompt photon cross sections in photoproduction at HERA.

The H1 collaboration Aktas, A. ; Andreev, V. ; Anthonis, T. ; et al.
Eur.Phys.J.C 38 (2005) 437-445, 2005.
Inspire Record 654175 DOI 10.17182/hepdata.46200

Results are presented on the photoproduction of isolated prompt photons, inclusively and associated with jets, in the gamma p center of mass energy range 142 < W < 266 GeV. The cross sections are measured for the transverse momentum range of the photons 5 < E_T^gamma < 10 GeV and for associated jets with E_T^jet > 4.5 GeV. They are measured differentially as a function of E_T^gamma, E_T^jet, the pseudorapidities eta^gamma and eta^jet and estimators of the momentum fractions x_gamma and x_p of the incident photon and proton carried by the constituents participating in the hard process. In order to further investigate the underlying dynamics, the angular correlation between the prompt photon and the jet in the transverse plane is studied. Predictions by perturbative QCD calculations in next to leading order are about 30% below the inclusive prompt photon data after corrections for hadronisation and multiple interactions, but are in reasonable agreement with the results for prompt photons associated with jets. Comparisons with the predictions of the event generators PYTHIA and HERWIG are also presented.

9 data tables

Inclusive prompt photon differential cross section as a function of ET.

Inclusive prompt photon differential cross section as a function of the pseudorapidity.

Prompt photon cross section as a function of the photon ET with an additional jet requirement.

More…

Forward pi0 production and associated transverse energy flow in deep-inelastic scattering at HERA.

The H1 collaboration Aktas, A. ; Andreev, V. ; Anthonis, T. ; et al.
Eur.Phys.J.C 36 (2004) 441-452, 2004.
Inspire Record 647847 DOI 10.17182/hepdata.46278

Deep-inelastic positron-proton interactions at low values of Bjorken-x down to x \approx 4.10^-5 which give rise to high transverse momentum pi^0 mesons are studied with the H1 experiment at HERA. The inclusive cross section for pi^0 mesons produced at small angles with respect to the proton remnant (the forward region) is presented as a function of the transverse momentum and energy of the pi^0 and of the four-momentum transfer Q^2 and Bjorken-x. Measurements are also presented of the transverse energy flow in events containing a forward pi^0 meson. Hadronic final state calculations based on QCD models implementing different parton evolution schemes are confronted with the data.

11 data tables

The inclusive PI0 cross section as a function of the Bjorken X.

The inclusive PI0 cross section as a function of the Bjorken X.

The inclusive PI0 cross section as a function of the Bjorken X.

More…

Measurement and QCD analysis of neutral and charged current cross sections at HERA.

The H1 collaboration Adloff, C. ; Andreev, V. ; Andrieu, B. ; et al.
Eur.Phys.J.C 30 (2003) 1-32, 2003.
Inspire Record 616311 DOI 10.17182/hepdata.11903

The inclusive e^+ p single and double differential cross sections for neutral and charged current processes are measured with the H1 detector at HERA. The data were taken in 1999 and 2000 at a centre-of-mass energy of \sqrt{s} = 319 GeV and correspond to an integrated luminosity of 65.2 pb^-1. The cross sections are measured in the range of four-momentum transfer squared Q^2 between 100 and 30000 GeV^2 and Bjorken x between 0.0013 and 0.65. The neutral current analysis for the new e^+ p data and the earlier e^- p data taken in 1998 and 1999 is extended to small energies of the scattered electron and therefore to higher values of inelasticity y, allowing a determination of the longitudinal structure function F_L at high Q^2 (110 - 700 GeV^2). A new measurement of the structure function x F_3 is obtained using the new e^+ p and previously published e^\pm p neutral current cross section data at high Q^2. These data together with H1 low Q^2 precision data are further used to perform new next-to-leading order QCD analyses in the framework of the Standard Model to extract flavour separated parton distributions in the proton.

21 data tables

The NC cross section DSIG/DQ**2. There is an additional 1.5 PCT normalization uncertainty.

The CC cross section DSIG/DQ**2. There is an additional 1.5 PCT normalization uncertainty.

The NC cross section DSIG/DX for Q**2 > 1000 GeV**2. There is an additional 1.5 PCT normalization uncertainty.

More…