Using data taken with the CLEO II detector at the Cornell Electron Storage Ring, we have determined the ratio of branching fractions: $R_{\gamma} \equiv \Gamma(\Upsilon(1S) \rightarrow \gamma gg)/\Gamma(\Upsilon(1S) \rightarrow ggg) = (2.75 \pm 0.04(stat.) \pm 0.15(syst.))%$. From this ratio, we have determined the QCD scale parameter $\Lambda_{\overline{MS}}$ (defined in the modified minimal subtraction scheme) to be $\Lambda_{\overline{MS}}= 233 \pm 11 \pm 59$ MeV, from which we determine a value for the strong coupling constant $\alpha_{s}(M_{\Upsilon(1S)}) = 0.163 \pm 0.002 \pm 0.014$, or $\alpha_{s}(M_{Z}) = 0.110 \pm 0.001 \pm 0.007$.
The ALPHAS at MZ is extrapolation from M(UPSI).
Jet production in deep inelastic scattering for $120
2+1 jet rate as a function of ycut the jet algorithm cut-off value. Statistical errors only.
Measured values of Lambda-QCD in the MS Bar scheme and alpha_s as a function of Q**2. The second systematic uncertainty is related to the theoretical uncertainties .
Strong coupling constant alpha_s extrapolated to the Z0 mass.
Using the Mark-J detector at the high-energy e+e− collider PETRA, we compare the data from hadron production with the complete second-order QCD calculation over the energy region 22 to 46.78 GeV. We determine the QCD parameter Λ=100±30−45+60 MeV which yields the strong-coupling constant αs=0.12±0.02 for s=44 GeV.
No description provided.
Axis error includes +- 0.0/0.0 contribution (DUE TO FRAGMENTATION MODEL).
With use of the MARK-J detector at s=34.7 GeV 21 000 e+e−→hadron events have been collected. By measurement of the asymmetry in angular energy correlations the strong coupling constant αs=0.13±0.01 (statistical)±0.02 (systematic) is determined, in complete second order, and independent of the fragmentation models and QCD cutoff values used.
DATA REQUESTED FROM THE AUTHORS.
No description provided.