None
Axis error includes +- 0.0/0.0 contribution (?////NO DISCUSSION OF ERRORS AT ALL).
None
Axis error includes +- 0.0/0.0 contribution (?////ERROR IN POLARIZATION OF INITIAL GAMMAS IS NOT GIVEN).
From a muon-proton scattering experiment with a streamer chamber at the Stanford Linear Accelerator we present results in the ranges 0.3<Q2<4.7 GeV2 and 1.7<W<4.7 GeV for the reactions μ+p→μpV where V is a vector meson (ρ0, ω, or φ). It is shown that in ρ production the skewing parameter and the longitudinal-transverse ratio change significantly as Q2 increases above 1 GeV2. The cross section for ρ0 production as a function of Q2 falls below the vector-meson-dominance prediction. The ratio of the cross section for exclusive vector-meson production to the total cross section falls by a factor of 10 between photoproduction and a Q2 of 2 GeV2, yet the ratio of ω to ρ production remains constant at the photoproduction value out to Q2>2 GeV2.
THE ABSOLUTE TOTAL CROSS SECTION IS FROM A FIT TO THE MIT-SLAC ELECTRON SCATTERING DATA BY W. ATWOOD AND S. STEIN.
No description provided.
FOR 0.6 < M(PI+ PI-) < 0.9 GEV, USING THE METHOD OF MOMENTS.
None
No description provided.
None
Axis error includes +- 10/10 contribution.
None
No description provided.
No description provided.
No description provided.
None
No description provided.
None
No description provided.
No description provided.
No description provided.
None
No description provided.
The differential cross-section for π+ photoproduction from hydrogen by γ-rays of laboratory energy 187 MeV has been measured at four angles. Two identical counter systems, designed to detect low energy pions unambiguosly in intense electron and γ-ray backgrounds, were used in conjunction with a cylindrical liquid hydrogen target, of very low boil-off rate. The cross-sections at laboratory angles of 39.2°, 66.7°, 111.6°, and 134° are 7.49±0.47, 8.10±0.57, 8.36±0.61 and 9.54±0.61, ·10−30cm2/sr, respectively, where the assigned errors refer only to the relative values. The absolute cross-sections are in substantial agreement with the dispersion theory and confirm the front to back asymmetry.
No description provided.