This paper presents a measurement of fiducial and differential cross-sections for $W^{+}W^{-}$ production in proton-proton collisions at $\sqrt{s}=13$ TeV with the ATLAS experiment at the Large Hadron Collider using a dataset corresponding to an integrated luminosity of 139 fb$^{-1}$. Events with exactly one electron, one muon and no hadronic jets are studied. The fiducial region in which the measurements are performed is inspired by searches for the electroweak production of supersymmetric charginos decaying to two-lepton final states. The selected events have moderate values of missing transverse momentum and the `stransverse mass' variable $m_{\textrm{T2}}$, which is widely used in searches for supersymmetry at the LHC. The ranges of these variables are chosen so that the acceptance is enhanced for direct $W^{+}W^{-}$ production and suppressed for production via top quarks, which is treated as a background. The fiducial cross-section and particle-level differential cross-sections for six variables are measured and compared with two theoretical SM predictions from perturbative QCD calculations.
A search for heavy neutral leptons (HNLs), the right-handed Dirac or Majorana neutrinos, is performed in final states with three charged leptons (electrons or muons) using proton-proton collision data collected by the CMS experiment at $\sqrt{s} =$ 13 TeV at the CERN LHC. The data correspond to an integrated luminosity of 138 fb$^{-1}$. The HNLs could be produced through mixing with standard model neutrinos $\nu$. For small values of the HNL mass ($\lt$ 20 GeV) and the square of the HNL-$\nu$ mixing parameter (10$^{-7}$-10$^{-2}$), the decay length of these particles can be large enough so that the secondary vertex of the HNL decay can be resolved with the CMS silicon tracker. The selected final state consists of one lepton emerging from the primary proton-proton collision vertex, and two leptons forming a displaced, secondary vertex. No significant deviations from the standard model expectations are observed, and constraints are obtained on the HNL mass and coupling strength parameters, excluding previously unexplored regions of parameter space in the mass range 1-20 GeV and squared mixing parameter values as low as 10$^{-7}$.
This paper reports cross-section measurements of $ZZ$ production in $pp$ collisions at $\sqrt{s}=13.6$ TeV at the Large Hadron Collider. The data were collected by the ATLAS detector in 2022, and correspond to an integrated luminosity of 29 fb$^-1$. Events in the $ZZ\rightarrow4\ell$ ($\ell = e$, $\mu$) final states are selected and used to measure the inclusive and differential cross-sections in a fiducial region defined close to the analysis selections. The inclusive cross-section is further extrapolated to the total phase space with a requirement of 66 $< m_Z <$ 116 GeV for both $Z$ bosons, yielding $16.8 \pm 1.1$ pb. The results are well described by the Standard Model predictions.
A measurement of off-shell Higgs boson production in the $H^*\to ZZ\to 4\ell$ decay channel is presented. The measurement uses 140 fb$^{-1}$ of proton-proton collisions at $\sqrt{s}=13$ TeV collected by the ATLAS detector at the Large Hadron Collider and supersedes the previous result in this decay channel using the same dataset. The data analysis is performed using a neural simulation-based inference method, which builds per-event likelihood ratios using neural networks. The observed (expected) off-shell Higgs boson production signal strength in the $ZZ\to 4\ell$ decay channel at 68% CL is $0.87^{+0.75}_{-0.54}$ ($1.00^{+1.04}_{-0.95}$). The evidence for off-shell Higgs boson production using the $ZZ\to 4\ell$ decay channel has an observed (expected) significance of $2.5\sigma$ ($1.3\sigma$). The expected result represents a significant improvement relative to that of the previous analysis of the same dataset, which obtained an expected significance of $0.5\sigma$. When combined with the most recent ATLAS measurement in the $ZZ\to 2\ell 2\nu$ decay channel, the evidence for off-shell Higgs boson production has an observed (expected) significance of $3.7\sigma$ ($2.4\sigma$). The off-shell measurements are combined with the measurement of on-shell Higgs boson production to obtain constraints on the Higgs boson total width. The observed (expected) value of the Higgs boson width at 68% CL is $4.3^{+2.7}_{-1.9}$ ($4.1^{+3.5}_{-3.4}$) MeV.
A measurement of the dijet production cross section is reported based on proton-proton collision data collected in 2016 at $\sqrt{s}$ = 13 TeV by the CMS experiment at the CERN LHC, corresponding to an integrated luminosity of up to 36.3 fb$^{-1}$. Jets are reconstructed with the anti-$k_\mathrm{T}$ algorithm for distance parameters of $R$ = 0.4 and 0.8. Cross sections are measured double-differentially (2D) as a function of the largest absolute rapidity $\lvert y_\text{max}\rvert$ of the two jets with the highest transverse momenta $p_\mathrm{T}$ and their invariant mass $m_{1,2}$, and triple-differentially (3D) as a function of the rapidity separation $y^*$, the total boost $y_\mathrm{b}$, and either $m_{1,2}$ or the average $p_\mathrm{T}$ of the two jets. The cross sections are unfolded to correct for detector effects and are compared with fixed-order calculations derived at next-to-next-to-leading order in perturbative quantum chromodynamics. The impact of the measurements on the parton distribution functions and the strong coupling constant at the mass of the Z boson is investigated, yielding a value of $\alpha_\mathrm{S}(m_\mathrm{Z})$ = 0.1179 $\pm$ 0.0019.
This paper presents a measurement of the production cross-section of a $Z$ boson in association with $b$- or $c$-jets, in proton-proton collisions at $\sqrt{s} = 13$ TeV with the ATLAS experiment at the Large Hadron Collider using data corresponding to an integrated luminosity of 140 fb$^{-1}$. Inclusive and differential cross-sections are measured for events containing a $Z$ boson decaying into electrons or muons and produced in association with at least one $b$-jet, at least one $c$-jet, or at least two $b$-jets with transverse momentum $p_\textrm{T} > 20$ GeV and rapidity $|y| < 2.5$. Predictions from several Monte Carlo generators based on next-to-leading-order matrix elements interfaced with a parton-shower simulation, with different choices of flavour schemes for initial-state partons, are compared with the measured cross-sections. The results are also compared with novel predictions, based on infrared and collinear safe jet flavour dressing algorithms. Selected $Z + \ge 1 c$-jet observables, optimized for sensitivity to intrinsic-charm, are compared with benchmark models with different intrinsic-charm fractions.
A measurement of the substructure of bottom quark jets (b jets) in proton-proton (pp) collisions is presented. The measurement uses data collected in pp collisions at $\sqrt{s}$ = 5.02 TeV recorded by the CMS experiment in 2017, corresponding to an integrated luminosity of 301$^{-1}$. An algorithm to identify and cluster the charged decay daughters of b hadrons is developed for this analysis, which facilitates the exposure of the gluon radiation pattern of b jets using iterative Cambridge-Aachen declustering. The soft-drop-groomed jet radius, $R_\mathrm{g}$, and momentum balance, $z_\mathrm{g}$, of b quark jets are presented. These observables can be used to test perturbative quantum chromodynamics predictions that account for mass effects. Because the b hadron is partially reconstructed from its charged decay daughters, only charged particles are used for the jet substructure studies. In addition, a jet fragmentation function, $z_\text{b,ch}$, is measured, which is defined as the distribution of the ratio of the transverse momentum ($p_\mathrm{T}$) of the partially reconstructed b hadron with respect to the charged-particle component of the jet $p_\mathrm{T}$. The substructure variable distributions are unfolded to the charged-particle level. The b jet substructure is compared to the substructure of jets in an inclusive jet sample that is dominated by light-quark and gluon jets in order to assess the role of the b quark mass. A strong suppression of emissions at small $R_\mathrm{g}$ values is observed for b jets when compared to inclusive jets, consistent with the dead-cone effect. The measurement is also compared with theoretical predictions from Monte Carlo event generators. This is the first substructure measurement of b jets that clusters together the b hadron decay daughters.
The azimuthal correlation angle, $\Delta\phi$, between the scattered lepton and the leading jet in deep inelastic $e^{\pm}p$ scattering at HERA has been studied using data collected with the ZEUS detector at a centre-of-mass energy of $\sqrt{s} = 318 \;\mathrm{GeV}$, corresponding to an integrated luminosity of $326 \;\mathrm{pb}^{-1}$. A measurement of jet cross sections in the laboratory frame was made in a fiducial region corresponding to photon virtuality $10 \;\mathrm{GeV}^2 < Q^2 < 350 \;\mathrm{GeV}^2$, inelasticity $0.04 < y < 0.7$, outgoing lepton energy $E_e > 10 \;\mathrm{GeV}$, lepton polar angle $140^\circ < \theta_e < 180^\circ$, jet transverse momentum $2.5 \;\mathrm{GeV} < p_\mathrm{T,jet} < 30 \;\mathrm{GeV}$, and jet pseudorapidity $-1.5 < \eta_\mathrm{jet} < 1.8$. Jets were reconstructed using the $k_\mathrm{T}$ algorithm with the radius parameter $R = 1$. The leading jet in an event is defined as the jet that carries the highest $p_\mathrm{T,jet}$. Differential cross sections, $d\sigma/d\Delta\phi$, were measured as a function of the azimuthal correlation angle in various ranges of leading-jet transverse momentum, photon virtuality and jet multiplicity. Perturbative calculations at $\mathcal{O}(\alpha_{s}^2)$ accuracy successfully describe the data within the fiducial region, although a lower level of agreement is observed near $\Delta\phi \rightarrow \pi$ for events with high jet multiplicity, due to limitations of the perturbative approach in describing soft phenomena in QCD. The data are equally well described by Monte Carlo predictions that supplement leading-order matrix elements with parton showering.
A search for new long-lived particles decaying to leptons using proton-proton collision data produced by the CERN LHC at $\sqrt{s}$ = 13 TeV is presented. Events are selected with two leptons (an electron and a muon, two electrons, or two muons) that both have transverse impact parameter values between 0.01 and 10 cm and are not required to form a common vertex. Data used for the analysis were collected with the CMS detector in 2016, 2017, and 2018, and correspond to an integrated luminosity of 118 (113) fb$^{-1}$ in the ee channel (e$\mu$ and $\mu\mu$ channels). The search is designed to be sensitive to a wide range of models with displaced e$\mu$, ee, and $\mu\mu$ final states. The results constrain several well-motivated models involving new long-lived particles that decay to displaced leptons. For some areas of the available phase space, these are the most stringent constraints to date.
A measurement of the inclusive jet production in proton-proton collisions at the LHC at $\sqrt{s}$ = 13 TeV is presented. The double-differential cross sections are measured as a function of the jet transverse momentum $p_\mathrm{T}$ and the absolute jet rapidity $\lvert y \rvert$. The anti-$k_\mathrm{T}$ clustering algorithm is used with distance parameter of 0.4 (0.7) in a phase space region with jet $p_\mathrm{T}$ from 97 GeV up to 3.1 TeV and $\lvert y \rvert\lt$ 2.0. Data collected with the CMS detector are used, corresponding to an integrated luminosity of 36.3 fb$^{-1}$ (33.5 fb$^{-1}$). The measurement is used in a comprehensive QCD analysis at next-to-next-to-leading order, which results in significant improvement in the accuracy of the parton distributions in the proton. Simultaneously, the value of the strong coupling constant at the Z boson mass is extracted as $\alpha_\mathrm{S}$(Z) = 0.1170 $\pm$ 0.0019. For the first time, these data are used in a standard model effective field theory analysis at next-to-leading order, where parton distributions and the QCD parameters are extracted simultaneously with imposed constraints on the Wilson coefficient $c_1$ of 4-quark contact interactions. Note added: in the Addendum to this paper, available as Appendix B in this document, an improved value of $\alpha_\mathrm{S}$(Z) = 0.1166 $\pm$ 0.0017 has been extracted. This result supersedes the number in the above abstract of the original publication.