A measurement of the top quark pair ($\mathrm{t\bar{t}}$) production cross section in proton-proton collisions at a centre-of-mass energy of 5.02 TeV is presented. The data were collected at the LHC in autumn 2017, in dedicated runs with low-energy and low-intensity conditions with respect to the default configuration, and correspond to an integrated luminosity of 302 pb$^{-1}$. The measurement is performed using events with one electron or muon, and multiple jets, at least one of them being identified as b quark (b tagged). Events are classified based on the number of all reconstructed jets and of b-tagged jets. Multivariate analysis techniques are used to enhance the separation between the signal and backgrounds. The measured cross section is 62.5 $\pm$ 1.6 (stat) $^{+2.6}_{-2.5}$ (syst) $\pm$ 1.2 (lumi) pb. A combination with the result in the dilepton channel based on the same data set yields a value of 62.3 $\pm$ 1.5 (stat) $\pm$ 2.4 (syst) $\pm$ 1.2 (lumi) pb, to be compared with the standard model prediction of 69.5$^{+3.5}_{-3.7}$ pb at next-to-next-to-leading order in perturbative quantum chromodynamics.
Distributions for data and expected signal and background contributions of the most discriminating input variables (\ensuremath{\Delta R_\mathrm{med}(\mathrm{j,j')}}) used for the random forest training, in the 3j1b category, before the maximum likelihood fit. The vertical error bars represent the statistical uncertainty in the data, and the shaded band the uncertainty in the prediction. All uncertainties considered in the analysis are included in the uncertainty band. The lower panels show the data-to-prediction ratio. The first and last bins in each distribution include underflow and overflow events, respectively.
Distributions for data and expected signal and background contributions of the most discriminating input variables (\ensuremath{\mathit{m}(\mathrm{u},\mathrm{u'})}) used for the random forest training, in the 3j1b category, before the maximum likelihood fit. The vertical error bars represent the statistical uncertainty in the data, and the shaded band the uncertainty in the prediction. All uncertainties considered in the analysis are included in the uncertainty band. The lower panels show the data-to-prediction ratio. The first and last bins in each distribution include underflow and overflow events, respectively.
Distributions for data and expected signal and background contributions of the MVA score for the e + jets channel in the 3j1b category, before the maximum likelihood fit. The vertical error bars represent the statistical uncertainty in the data, and the shaded band the uncertainty in the prediction. All uncertainties considered in the analysis are included in the uncertainty band. The lower panels show the data-to-prediction ratio. The first and last bins in each distribution include underflow and overflow events, respectively.
A search is presented for the pair production of new heavy resonances, each decaying into a top quark (t) or antiquark and a gluon (g). The analysis uses data recorded with the CMS detector from proton-proton collisions at a center-of-mass energy of 13 TeV at the LHC, corresponding to an integrated luminosity of 138 fb$^{-1}$. Events with one muon or electron, multiple jets, and missing transverse momentum are selected. After using a deep neural network to enrich the data sample with signal-like events, distributions in the scalar sum of the transverse momenta of all reconstructed objects are analyzed in the search for a signal. No significant deviations from the standard model prediction are found. Upper limits at 95% confidence level are set on the product of cross section and branching fraction squared for the pair production of excited top quarks in the $\mathrm{t^*}$ $\to$ tg decay channel. The upper limits range from 120 to 0.8 fb for a $\mathrm{t^*}$ with spin-1/2 and from 15 to 1.0 fb for a $\mathrm{t^*}$ with spin-3/2. These correspond to mass exclusion limits up to 1050 and 1700 GeV for spin-1/2 and spin-3/2 $\mathrm{t^*}$ particles, respectively. These are the most stringent limits to date on the existence of $\mathrm{t^*}$ $\to$ tg resonances.
Expected and observed 95% CL upper limits on the product of the $t^{*} \overline{t}^{*}$ production cross section and the branching fraction squared $BR^2(t^{*} \rightarrow tg)$ for a spin-1/2 $t^{*}$ as a function of $m_{t^{*}}$. The inner (green) and outer (yellow) bands give the central probability intervals containing 68 and 95% of the expected upper limits under the background-only hypothesis. The cross section predicted by theory, following an EFT approach, is shown in blue, assuming $BR(t^{*} \rightarrow tg)=1$.
Expected and observed 95% CL upper limits on the product of the $t^{*} \overline{t}^{*}$ production cross section and the branching fraction squared $BR^2(t^{*} \rightarrow tg)$ for a spin-3/2 $t^{*}$ as a function of $m_{t^{*}}$. The inner (green) and outer (yellow) bands give the central probability intervals containing 68 and 95% of the expected upper limits under the background-only hypothesis. The cross section predicted by theory, following an EFT approach, is shown in blue, assuming $BR(t^{*} \rightarrow tg)=1$. The results of the previous CMS analysis, using data corresponding to an integrated luminosity of 35.9 $fb^{-1}$, are shown in red.
Distributions in $S_T$ in the SR for the muon channel, after a background-only fit to the data. The signal distributions are scaled to the cross section predicted by the theory. The hatched bands show the post-fit uncertainty band, combining all sources of uncertainty. The ratio of data to the background predictions is shown in the panels below the distributions.
Three rare decay processes of the Higgs boson to a $\rho$(770)$^0$, $\phi$(1020), or K$^{*}$(892)$^0$ meson and a photon are searched for using $\sqrt{s}$ = 13 TeV proton-proton collision data collected by the CMS experiment at the LHC. Events are selected assuming the mesons decay into a pair of charged pions, a pair of charged kaons, or a charged kaon and pion, respectively. Depending on the Higgs boson production mode, different triggering and reconstruction techniques are adopted. The analyzed data sets correspond to integrated luminosities up to 138 fb$^{-1}$, depending on the reconstructed final state. After combining various data sets and categories, no significant excess above the background expectations is observed. Upper limits at 95% confidence level on the Higgs boson branching fractions into $\rho$(770)$^0$$\gamma$, $\phi$(1020)$\gamma$, and K$^{*}$(892)$^0\gamma$ are determined to be 3.7 $\times$ 10$^{-4}$, 3.0 $\times$ 10$^{-4}$, and 3.0 $\times$ 10$^{-4}$, respectively. In case of the $\rho$(770)$^0$$\gamma$ and $\phi$(1020)$\gamma$ channels, these are the most stringent experimental limits to date.
Expected and observed UL on $\mathcal{B}(H\rightarrow\rho\gamma)$ split by analysis categories and combined. Green and yellow bands correspond to 68\% and 95\% confidence intervals on the expected upper limits.
Expected and observed UL on $\mathcal{B}(H\rightarrow\phi\gamma)$ split by analysis categories and combined. Green and yellow bands correspond to 68\% and 95\% confidence intervals on the expected upper limits.
Expected and observed UL on $\mathcal{B}(H\rightarrow K^{*0}\gamma)$ split by analysis categories and combined. Green and yellow bands correspond to 68\% and 95\% confidence intervals on the expected upper limits.
The paper presents a search for supersymmetric particles produced in proton-proton collisions at $\sqrt{s}=$ 13 TeV and decaying into final states with missing transverse momentum and jets originating from charm quarks. The data were taken with the ATLAS detector at the Large Hadron Collider at CERN from 2015 to 2018 and correspond to an integrated luminosity of 139 fb$^{-1}$. No significant excess of events over the expected Standard Model background expectation is observed in optimized signal regions, and limits are set on the production cross-sections of the supersymmetric particles. Pair production of charm squarks or top squarks, each decaying into a charm quark and the lightest supersymmetric particle $\tilde{\chi}^0_1$, is excluded at 95% confidence level for squarks with masses up to 900 GeV for scenarios where the mass of $\tilde{\chi}^0_1$ is below 50 GeV. Additionally, the production of leptoquarks with masses up to 900 GeV is excluded for the scenario where up-type leptoquarks decay into a charm quark and a neutrino. Model-independent limits on cross-sections and event yields for processes beyond the Standard Model are also reported.
Summary of material in this HEPData record. <br/><br/> Truth Code snippets, SLHA files, Madgraph process cards and UFO files for the leptoquark models are available under "Additional Resources" (purple button on the left). <br/><br/> <b>Contours:</b> <ul> SUSY exclusion limits (best-expected SR combination) <ul> <a href="155678?version=1&table=Contour1">Expected</a> <a href="155678?version=1&table=Contour3">+1$\sigma$</a> <a href="155678?version=1&table=Contour2">-1$\sigma$</a> <br/> <a href="155678?version=1&table=Contour4">Observed</a> <a href="155678?version=1&table=Contour5">+1$\sigma$</a> <a href="155678?version=1&table=Contour6">-1$\sigma$</a> <br/> </ul> SUSY exclusion limits (best-expected SR combination) as a function of $\Delta m(\tilde{t}_1,\tilde{\chi}_1^0)$ <ul> <a href="155678?version=1&table=Contour7">Expected</a> <a href="155678?version=1&table=Contour9">+1$\sigma$</a> <a href="155678?version=1&table=Contour8">-1$\sigma$</a> <br/> <a href="155678?version=1&table=Contour10">Observed</a> <a href="155678?version=1&table=Contour11">+1$\sigma$</a> <a href="155678?version=1&table=Contour12">-1$\sigma$</a> <br/> </ul> SUSY exclusion limits (SR-HM1) <ul> <a href="155678?version=1&table=Contour15">Expected</a> <a href="155678?version=1&table=Contour14">+1$\sigma$</a> <a href="155678?version=1&table=Contour13">-1$\sigma$</a> <br/> <a href="155678?version=1&table=Contour18">Observed</a> <a href="155678?version=1&table=Contour16">+1$\sigma$</a> <a href="155678?version=1&table=Contour17">-1$\sigma$</a> <br/> </ul> SUSY exclusion limits (SR-HM2) <ul> <a href="155678?version=1&table=Contour21">Expected</a> <a href="155678?version=1&table=Contour20">+1$\sigma$</a> <a href="155678?version=1&table=Contour19">-1$\sigma$</a> <br/> <a href="155678?version=1&table=Contour24">Observed</a> <a href="155678?version=1&table=Contour22">+1$\sigma$</a> <a href="155678?version=1&table=Contour23">-1$\sigma$</a> <br/> </ul> SUSY exclusion limits (SR-HM3) <ul> <a href="155678?version=1&table=Contour27">Expected</a> <a href="155678?version=1&table=Contour26">+1$\sigma$</a> <a href="155678?version=1&table=Contour25">-1$\sigma$</a> <br/> <a href="155678?version=1&table=Contour30">Observed</a> <a href="155678?version=1&table=Contour28">+1$\sigma$</a> <a href="155678?version=1&table=Contour29">-1$\sigma$</a> <br/> </ul> SUSY exclusion limits (SR-Comp1) <ul> <a href="155678?version=1&table=Contour33">Expected</a> <a href="155678?version=1&table=Contour32">+1$\sigma$</a> <a href="155678?version=1&table=Contour31">-1$\sigma$</a> <br/> <a href="155678?version=1&table=Contour36">Observed</a> <a href="155678?version=1&table=Contour34">+1$\sigma$</a> <a href="155678?version=1&table=Contour35">-1$\sigma$</a> <br/> </ul> SUSY exclusion limits (SR-Comp2) <ul> <a href="155678?version=1&table=Contour39">Expected</a> <a href="155678?version=1&table=Contour38">+1$\sigma$</a> <a href="155678?version=1&table=Contour37">-1$\sigma$</a> <br/> <a href="155678?version=1&table=Contour42">Observed</a> <a href="155678?version=1&table=Contour40">+1$\sigma$</a> <a href="155678?version=1&table=Contour41">-1$\sigma$</a> <br/> </ul> SUSY exclusion limits (SR-Comp3) <ul> <a href="155678?version=1&table=Contour45">Expected</a> <a href="155678?version=1&table=Contour44">+1$\sigma$</a> <a href="155678?version=1&table=Contour43">-1$\sigma$</a> <br/> <a href="155678?version=1&table=Contour48">Observed</a> <a href="155678?version=1&table=Contour46">+1$\sigma$</a> <a href="155678?version=1&table=Contour47">-1$\sigma$</a> <br/> </ul> SUSY exclusion limits (SR-Comp-1c) <ul> <a href="155678?version=1&table=Contour50">Expected</a> <a href="155678?version=1&table=Contour49">-1$\sigma$</a> <br/> </ul> SUSY exclusion limits (scan over branching fraction for $m(\tilde{\chi}_1^0)=1$ GeV) <ul> <a href="155678?version=1&table=Contour51">Expected</a> <a href="155678?version=1&table=Contour53">+1$\sigma$</a> <a href="155678?version=1&table=Contour52">-1$\sigma$</a> <br/> <a href="155678?version=1&table=Contour54">Observed</a> <a href="155678?version=1&table=Contour55">+1$\sigma$</a> <a href="155678?version=1&table=Contour56">-1$\sigma$</a> <br/> </ul> SUSY exclusion limits (scan over branching fraction for $m(\tilde{\chi}_1^0)=200$ GeV) <ul> <a href="155678?version=1&table=Contour57">Expected</a> <a href="155678?version=1&table=Contour59">+1$\sigma$</a> <a href="155678?version=1&table=Contour58">-1$\sigma$</a> <br/> <a href="155678?version=1&table=Contour60">Observed</a> <a href="155678?version=1&table=Contour61">+1$\sigma$</a> <a href="155678?version=1&table=Contour62">-1$\sigma$</a> <br/> </ul> $\mathrm{LQ}^\mathrm{u}_{21}$ exclusion limits <ul> <a href="155678?version=1&table=Contour65">Expected</a> <a href="155678?version=1&table=Contour64">+1$\sigma$</a> <a href="155678?version=1&table=Contour63">-1$\sigma$</a> <br/> <a href="155678?version=1&table=Contour68">Observed</a> <a href="155678?version=1&table=Contour66">+1$\sigma$</a> <a href="155678?version=1&table=Contour67">-1$\sigma$</a> <br/> </ul> $\mathrm{LQ}^\mathrm{u}_{22}$ exclusion limits <ul> <a href="155678?version=1&table=Contour71">Expected</a> <a href="155678?version=1&table=Contour70">+1$\sigma$</a> <a href="155678?version=1&table=Contour69">-1$\sigma$</a> <br/> <a href="155678?version=1&table=Contour74">Observed</a> <a href="155678?version=1&table=Contour72">+1$\sigma$</a> <a href="155678?version=1&table=Contour73">-1$\sigma$</a> <br/> </ul> </ul> <b>Cross-section upper limits:</b> <ul> SUSY signals (best-expected SR combination): <a href="155678?version=1&table=Cross-sectionupperlimit1">Observed</a> <br/> $\mathrm{LQ}^\mathrm{u}_{21}$ (combined High-Mass SRs): <a href="155678?version=1&table=Cross-sectionupperlimit2">Observed</a> <br/> $\mathrm{LQ}^\mathrm{u}_{22}$ (combined High-Mass SRs): <a href="155678?version=1&table=Cross-sectionupperlimit3">Observed</a> <br/> $U(1)$ pair (min) (combined High-Mass SRs): <a href="155678?version=1&table=Cross-sectionupperlimit6">Expected</a> <a href="155678?version=1&table=Cross-sectionupperlimit5">+1$\sigma$</a> <a href="155678?version=1&table=Cross-sectionupperlimit4">-1$\sigma$</a> <a href="155678?version=1&table=Cross-sectionupperlimit7">Observed</a> <br/> $U(1)$ pair (YM) (combined High-Mass SRs): <a href="155678?version=1&table=Cross-sectionupperlimit10">Expected</a> <a href="155678?version=1&table=Cross-sectionupperlimit9">+1$\sigma$</a> <a href="155678?version=1&table=Cross-sectionupperlimit8">-1$\sigma$</a> <a href="155678?version=1&table=Cross-sectionupperlimit11">Observed</a> <br/> </ul> <b>Signal region distributions:</b> <ul> <a href="155678?version=1&table=SRdistribution2">$E_\mathrm{T}^\mathrm{miss}$ Sig. in SR-HM1</a> <br/> <a href="155678?version=1&table=SRdistribution3">$m_\mathrm{T}^\mathrm{min}(c)$ in SR-HM2</a> <br/> <a href="155678?version=1&table=SRdistribution4">$R_\mathrm{ISR}$ in SR-Comp1</a> <br/> <a href="155678?version=1&table=SRdistribution5">$R_\mathrm{ISR}$ in SR-Comp2</a> <br/> <a href="155678?version=1&table=SRdistribution6">$R_\mathrm{ISR}$ in SR-Comp3</a> <br/> <a href="155678?version=1&table=SRdistribution1">$R_\mathrm{ISR}$ in SR-Comp-1c</a> <br/> </ul> <b>Acceptances:</b> <ul> SUSY signals: <a href="155678?version=1&table=Acceptance2">SR-HM1</a> <a href="155678?version=1&table=Acceptance3">SR-HM2</a> <a href="155678?version=1&table=Acceptance4">SR-HM3</a> <a href="155678?version=1&table=Acceptance5">SR-HM-Disc</a> <a href="155678?version=1&table=Acceptance6">SR-Comp1</a> <a href="155678?version=1&table=Acceptance7">SR-Comp2</a> <a href="155678?version=1&table=Acceptance8">SR-Comp3</a> <a href="155678?version=1&table=Acceptance1">SR-Comp-1c</a> <br/> $\mathrm{LQ}^\mathrm{u}_{21}$: <a href="155678?version=1&table=Acceptance9">SR-HM1</a> <a href="155678?version=1&table=Acceptance10">SR-HM2</a> <a href="155678?version=1&table=Acceptance11">SR-HM3</a> <a href="155678?version=1&table=Acceptance12">SR-HM-Disc</a> <br/> $\mathrm{LQ}^\mathrm{u}_{22}$: <a href="155678?version=1&table=Acceptance13">SR-HM1</a> <a href="155678?version=1&table=Acceptance14">SR-HM2</a> <a href="155678?version=1&table=Acceptance15">SR-HM3</a> <a href="155678?version=1&table=Acceptance16">SR-HM-Disc</a> <br/> $U(1)$ pair (min): <a href="155678?version=1&table=Acceptance17">SR-HM1</a> <a href="155678?version=1&table=Acceptance18">SR-HM2</a> <a href="155678?version=1&table=Acceptance19">SR-HM3</a> <a href="155678?version=1&table=Acceptance20">SR-HM-Disc</a> <br/> $U(1)$ pair (YM): <a href="155678?version=1&table=Acceptance21">SR-HM1</a> <a href="155678?version=1&table=Acceptance22">SR-HM2</a> <a href="155678?version=1&table=Acceptance23">SR-HM3</a> <a href="155678?version=1&table=Acceptance24">SR-HM-Disc</a> <br/> </ul> <b>Efficiencies:</b> <ul> $U(1)$ pair (min): <a href="155678?version=1&table=Efficiency1">SR-HM1</a> <a href="155678?version=1&table=Efficiency2">SR-HM2</a> <a href="155678?version=1&table=Efficiency3">SR-HM3</a> <a href="155678?version=1&table=Efficiency4">SR-HM-Disc</a> <br/> $U(1)$ pair (YM): <a href="155678?version=1&table=Efficiency5">SR-HM1</a> <a href="155678?version=1&table=Efficiency6">SR-HM2</a> <a href="155678?version=1&table=Efficiency7">SR-HM3</a> <a href="155678?version=1&table=Efficiency8">SR-HM-Disc</a> <br/> </ul> <b>Acceptance times efficiency:</b> <ul> SUSY signals: <a href="155678?version=1&table=Acceptancetimesefficiency2">SR-HM1</a> <a href="155678?version=1&table=Acceptancetimesefficiency3">SR-HM2</a> <a href="155678?version=1&table=Acceptancetimesefficiency4">SR-HM3</a> <a href="155678?version=1&table=Acceptancetimesefficiency5">SR-HM-Disc</a> <a href="155678?version=1&table=Acceptancetimesefficiency6">SR-Comp1</a> <a href="155678?version=1&table=Acceptancetimesefficiency7">SR-Comp2</a> <a href="155678?version=1&table=Acceptancetimesefficiency8">SR-Comp3</a> <a href="155678?version=1&table=Acceptancetimesefficiency1">SR-Comp-1c</a> <br/> $\mathrm{LQ}^\mathrm{u}_{21}$: <a href="155678?version=1&table=Acceptancetimesefficiency9">SR-HM1</a> <a href="155678?version=1&table=Acceptancetimesefficiency10">SR-HM2</a> <a href="155678?version=1&table=Acceptancetimesefficiency11">SR-HM3</a> <a href="155678?version=1&table=Acceptancetimesefficiency12">SR-HM-Disc</a> <br/> $\mathrm{LQ}^\mathrm{u}_{22}$: <a href="155678?version=1&table=Acceptancetimesefficiency13">SR-HM1</a> <a href="155678?version=1&table=Acceptancetimesefficiency14">SR-HM2</a> <a href="155678?version=1&table=Acceptancetimesefficiency15">SR-HM3</a> <a href="155678?version=1&table=Acceptancetimesefficiency16">SR-HM-Disc</a> <br/> $U(1)$ pair (min): <a href="155678?version=1&table=Acceptancetimesefficiency17">SR-HM1</a> <a href="155678?version=1&table=Acceptancetimesefficiency18">SR-HM2</a> <a href="155678?version=1&table=Acceptancetimesefficiency19">SR-HM3</a> <a href="155678?version=1&table=Acceptancetimesefficiency20">SR-HM-Disc</a> <br/> $U(1)$ pair (YM): <a href="155678?version=1&table=Acceptancetimesefficiency21">SR-HM1</a> <a href="155678?version=1&table=Acceptancetimesefficiency22">SR-HM2</a> <a href="155678?version=1&table=Acceptancetimesefficiency23">SR-HM3</a> <a href="155678?version=1&table=Acceptancetimesefficiency24">SR-HM-Disc</a> <br/> </ul> <b>Cutflow:</b> <ul> SUSY benchmarks: <a href="155678?version=1&table=Cutflow5">SR-HM1</a> <a href="155678?version=1&table=Cutflow6">SR-HM2</a> <a href="155678?version=1&table=Cutflow7">SR-HM3</a> <a href="155678?version=1&table=Cutflow8">SR-HM-Disc</a> <a href="155678?version=1&table=Cutflow2">SR-Comp1</a> <a href="155678?version=1&table=Cutflow3">SR-Comp2</a> <a href="155678?version=1&table=Cutflow4">SR-Comp3</a> <a href="155678?version=1&table=Cutflow1">SR-Comp-1c</a> <br/> LQ benchmarks: <a href="155678?version=1&table=Cutflow9">SR-HM1</a> <a href="155678?version=1&table=Cutflow10">SR-HM2</a> <a href="155678?version=1&table=Cutflow11">SR-HM3</a> <a href="155678?version=1&table=Cutflow12">SR-HM-Disc</a> <br/> </ul>
Expected exclusion limit at 95% CL for pair production of top squarks decaying to charm quarks and neutralinos.
Expected exclusion limit $(-1\sigma)$ at 95% CL for pair production of top squarks decaying to charm quarks and neutralinos.
ALICE is a large experiment at the CERN Large Hadron Collider. Located 52 meters underground, its detectors are suitable to measure muons produced by cosmic-ray interactions in the atmosphere. In this paper, the studies of the cosmic muons registered by ALICE during Run 2 (2015--2018) are described. The analysis is limited to multimuon events defined as events with more than four detected muons ($N_\mu>4$) and in the zenith angle range $0^{\circ}<\theta<50^{\circ}$. The results are compared with Monte Carlo simulations using three of the main hadronic interaction models describing the air shower development in the atmosphere: QGSJET-II-04, EPOS-LHC, and SIBYLL 2.3. The interval of the primary cosmic-ray energy involved in the measured muon multiplicity distribution is about $ 4 \times 10^{15}<E_\mathrm{prim}< 6 \times 10^{16}$~eV. In this interval none of the three models is able to describe precisely the trend of the composition of cosmic rays as the energy increases. However, QGSJET is found to be the only model capable of reproducing reasonably well the muon multiplicity distribution, assuming a heavy composition of the primary cosmic rays over the whole energy range, while SIBYLL and EPOS-LHC underpredict the number of muons in a large interval of multiplicity by more than $20\%$ and $30\%$, respectively. The rate of high muon multiplicity events ($N_\mu>100$) obtained with QGSJET and SIBYLL is compatible with the data, while EPOS-LHC produces a significantly lower rate ($55\%$ of the measured rate). For both QGSJET and SIBYLL, the rate is close to the data when the composition is assumed to be dominated by heavy elements, an outcome compatible with the average energy $E_\mathrm{prim} \sim 10^{17}$~eV of these events. This result places significant constraints on more exotic production mechanisms.
Muon multiplicity distribution measured with the ALICE apparatus and obtained for the whole data sample of Run 2 corresponding to a live time of 62.5 days. The data points are grouped in multiplicity intervals with a width of five units ($N_\mu=5-9,~N_\mu=10-14,~...$), and are located at the center of each interval ($N_\mu=7,~N_\mu=12,~...$). The vertical error bars represent the statistical uncertainties.
Muon multiplicity distribution measured with the ALICE apparatus and obtained for the whole data sample of Run 2 corresponding to a live time of 62.5 days. The data are the same as Fig. 3 but each bin corresponds to a single muon multiplicity ($N_\mu=1,2,3,~...$); the distribution starts at $N_\mu=5$. The vertical error bars represent the statistical uncertainties.
Measured muon multiplicity distribution compared with simulations from CORSIKA Monte Carlo generator using QGSJET-II-04 (top), SIBYLL 2.3 (middle), and EPOS-LHC (bottom) as hadronic interaction models for proton and iron primary cosmic rays. Iron points are slightly shifted to the right to avoid overlapping with the data points. The total uncertainties in the MC simulations are given by the vertical bars, while the boxes give the systematic uncertainties of the data and the vertical bars the statistical ones.
We report results of a search for nuclear recoils induced by weakly interacting massive particle (WIMP) dark matter using the LUX-ZEPLIN (LZ) two-phase xenon time projection chamber. This analysis uses a total exposure of $4.2\pm0.1$ tonne-years from 280 live days of LZ operation, of which $3.3\pm0.1$ tonne-years and 220 live days are new. A technique to actively tag background electronic recoils from $^{214}$Pb $\beta$ decays is featured for the first time. Enhanced electron-ion recombination is observed in two-neutrino double electron capture decays of $^{124}$Xe, representing a noteworthy new background. After removal of artificial signal-like events injected into the data set to mitigate analyzer bias, we find no evidence for an excess over expected backgrounds. World-leading constraints are placed on spin-independent (SI) and spin-dependent WIMP-nucleon cross sections for masses $\geq$9 GeV/$c^2$. The strongest SI exclusion set is $2.1\times10^{-48}$ cm$^{2}$ at the 90% confidence level at a mass of 36 GeV/$c^2$, and the best SI median sensitivity achieved is $5.0\times10^{-48}$ cm$^{2}$ for a mass of 40 GeV/$c^2$.
90% CL WIMP SI cross sections, including sensitivities
90% CL WIMP SDn cross sections, including sensitivities and nuclear structure uncertainties
90% CL WIMP SDp cross sections, including sensitivities and nuclear structure uncertainties
The first FASER search for a light, long-lived particle decaying into a pair of photons is reported. The search uses LHC proton-proton collision data at $\sqrt{s}=13.6~\text{TeV}$ collected in 2022 and 2023, corresponding to an integrated luminosity of $57.7\text{fb}^{-1}$. A model with axion-like particles (ALPs) dominantly coupled to weak gauge bosons is the primary target. Signal events are characterised by high-energy deposits in the electromagnetic calorimeter and no signal in the veto scintillators. One event is observed, compared to a background expectation of $0.44 \pm 0.39$ events, which is entirely dominated by neutrino interactions. World-leading constraints on ALPs are obtained for masses up to $300~\text{MeV}$ and couplings to the Standard Model W gauge boson, $g_{aWW}$, around $10^{-4}$ GeV$^{-1}$, testing a previously unexplored region of parameter space. Other new particle models that lead to the same experimental signature, including ALPs coupled to gluons or photons, U(1)$_B$ gauge bosons, up-philic scalars, and a Type-I two-Higgs doublet model, are also considered for interpretation, and new constraints on previously viable parameter space are presented in this paper.
90% CL observed contour for ALP-W model
90% CL observed contour for ALP-gluon model
90% CL observed contour for ALP-photon model
A search for heavy, long-lived, charged particles with large ionization energy loss within the silicon tracker of the CMS experiment is presented. A data set of proton-proton collisions at a center of mass energy at $\sqrt{s}$ = 13 TeV, collected in 2017 and 2018 at the CERN LHC, corresponding to an integrated luminosity of 101 fb$^{-1}$, is used in this analysis. Two different approaches for the search are taken. A new method exploits the independence of the silicon pixel and strips measurements, while the second method improves on previous techniques using ionization to determine a mass selection. No significant excess of events above the background expectation is observed. The results are interpreted in the context of the pair production of supersymmetric particles, namely gluinos, top squarks, and tau sleptons, and of the Drell-Yan pair production of fourth generation ($\tau'$) leptons with an electric charge equal to or twice the absolute value of the electron charge ($e$). An interpretation of a Z$'$ boson decaying to two $\tau'$ leptons with an electric charge equal to 2$e$ is presented for the first time. The 95% confidence upper limits on the production cross section are extracted for each of these hypothetical particles.
The $F_{\text{i}}^{\text{Pixels}}$ vs $G_{\text{i}}^{\text{Strips}}$ distribution for the SM MC after passing the selection criteria listed in Table 2.
The $F_{\text{i}}^{\text{Pixels}}$ vs $G_{\text{i}}^{\text{Strips}}$ distribution the 1800 GeV mass gluino R-hadron (right), after passing the selection criteria listed in Table 2.
The $G_{\text{i}}^{\text{Strips}}$ distribution in the FAIL region for events passing the event selection and with $55 < p_{\mathrm{T}} < 200$ GeV.
A first measurement is presented of the cross section for the scattering of same-sign W boson pairs via the detection of a $\tau$ lepton. The data from proton-proton collisions at the center-of-mass energy of 13 TeV were collected by the CMS detector at the LHC, and correspond to an integrated luminosity of 138 fb$^{-1}$. Events were selected that contain two jets with large pseudorapidity and large invariant mass, one $\tau$ lepton, one light lepton (e or $\mu$), and significant missing transverse momentum. The measured cross section for electroweak same-sign WW scattering is 1.44$^{+0.63}_{-0.56}$ times the standard model prediction. In addition, a search is presented for the indirect effects of processes beyond the standard model via the effective field theory framework, in terms of dimension-6 and dimension-8 operators.
Measured signal strength for electroweak (EW) same-sign WW scattering in events with one tau lepton and one light lepton (electron or muon), as well as two jets with large pseudorapidity separation and large dijet invariant mass. The signal strength is defined as the ratio of the observed yield to the Standard Model prediction.
Measured signal strength for combined electroweak (EW) and QCD same-sign WW scattering in events with one tau lepton and one light lepton (electron or muon), as well as two jets with large pseudorapidity separation and large dijet invariant mass. The signal strength is defined as the ratio of the observed yield to the Standard Model prediction.
Observed and expected 68% and 95% confidence intervals on the Wilson coefficients associated with the EFT dimension-6 operators.
This paper reports a search for a light CP-odd scalar resonance with a mass of 20 GeV to 90 GeV in 13 TeV proton-proton collision data with an integrated luminosity of 140 fb$^{-1}$ collected with the ATLAS detector at the Large Hadron Collider. The analysis assumes the resonance is produced via gluon-gluon fusion and decays into a $\tau^{+}\tau^{-}$ pair which subsequently decays into a fully leptonic $\mu^{+}\nu_{\mu} \bar{\nu}_{\tau} e^{-} \bar{\nu}_{e} \nu_{\tau}$ or $e^{+}\nu_{e}\bar{\nu}_{\tau} \mu^-\bar{\nu}_{\mu}\nu_{\tau}$ final state. No significant excess of events above the predicted Standard Model background is observed. The results are interpreted within a flavour-aligned two-Higgs-doublet model, and a model-independent cross-section interpretation is also given. Upper limits at 95$%$ confidence level between 3.0 pb and 68 pb are set on the cross-section for producing a CP-odd Higgs boson that decays into a $\tau^+\tau^-$ pair.
Post-fit $m_\mathrm{MMC}$ distribution in the low-mass SR for the $m_A = 20\,\mathrm{GeV}$ signal mass hypothesis. $m_\mathrm{MMC}$ is the mass reconstructed by the Missing Mass Calculator. Processes contributing to the background Others are $Z/\gamma^* \rightarrow ee/\mu\mu$ and SM Higgs. The subscript on the $A\to\tau\tau$ process indicates the mass of the $A$ boson. Total includes all backgrounds and the signal process. The low-mass Signal Region is defined as: - 1 electron and 1 muon with opposite charge - $p_\mathrm{T}$ requirements of the leptons are a combination of the following: - $p_\mathrm{T}^e > 18\,\mathrm{GeV}$ and $p_\mathrm{T}^\mu > 15\,\mathrm{GeV}$ - $p_\mathrm{T}^e > 10\,\mathrm{GeV}$ and $p_\mathrm{T}^\mu > 25\,\mathrm{GeV}$ - $p_\mathrm{T}^e > 27\,\mathrm{GeV}$ and $p_\mathrm{T}^\mu > 10\,\mathrm{GeV}$ - $\vert \eta_e \vert < 2.47$, excluding $1.37 < \vert \eta_e \vert < 1.52$ - $\vert \eta_\mu \vert < 2.7$ - no jets with $b$-quarks - $\Delta R_{\ell\ell} < 0.7$ - $E_\mathrm{T}^\mathrm{miss} > 50\,\mathrm{GeV}$ - $m_\mathrm{T}^\mathrm{tot} = \sqrt{\left(p_\mathrm{T}^e+p_\mathrm{T}^\mu+E_\mathrm{T}^\mathrm{miss}\right)^2-\left(\vec{p}_\mathrm{T}^{\,e}+\vec{p}_\mathrm{T}^{\,\mu}+\vec{E}_\mathrm{T}^{\,\mathrm{miss}}\right)^2} < 45\,\mathrm{GeV}$ - $m_\mathrm{MMC} > 0\,\mathrm{GeV}$
Post-fit $m_\mathrm{MMC}$ distribution in the high-mass SR for the $m_A = 90\,\mathrm{GeV}$ signal mass hypothesis. $m_\mathrm{MMC}$ is the mass reconstructed by the Missing Mass Calculator. Processes contributing to the background Others are $Z/\gamma^* \rightarrow ee/\mu\mu$ and SM Higgs. The subscript on the $A\to\tau\tau$ process indicates the mass of the $A$ boson. otal includes all backgrounds and the signal process. The high-mass Signal Region is defined as: - 1 electron and 1 muon with opposite charge - $p_\mathrm{T}$ requirements of the leptons are a combination of the following: - $p_\mathrm{T}^e > 18\,\mathrm{GeV}$ and $p_\mathrm{T}^\mu > 15\,\mathrm{GeV}$ or - $p_\mathrm{T}^e > 10\,\mathrm{GeV}$ and $p_\mathrm{T}^\mu > 25\,\mathrm{GeV}$ or - $p_\mathrm{T}^e > 27\,\mathrm{GeV}$ and $p_\mathrm{T}^\mu > 10\,\mathrm{GeV}$ - $\vert \eta_e \vert < 2.47$, excluding $1.37 < \vert \eta_e \vert < 1.52$ - $\vert \eta_\mu \vert < 2.7$ - no jets with $b$-quarks - $\Delta R_{\ell\ell} < 1.0$ - $E_\mathrm{T}^\mathrm{miss} > 30\,\mathrm{GeV}$ - $m_\mathrm{T}^\mathrm{tot} = \sqrt{\left(p_\mathrm{T}^e+p_\mathrm{T}^\mu+E_\mathrm{T}^\mathrm{miss}\right)^2-\left(\vec{p}_\mathrm{T}^{\,e}+\vec{p}_\mathrm{T}^{\,\mu}+\vec{E}_\mathrm{T}^{\,\mathrm{miss}}\right)^2} < 65\,\mathrm{GeV}$ - $35\,\mathrm{GeV} < m_\mathrm{MMC} < 130\,\mathrm{GeV}$
Expected and observed $95\%$ CL limits on the production cross-section for $gg\rightarrow A$ times the branching ratio for $A$ decaying into two $\tau$-leptons for $A$ boson masses ranging from $20$ to $90\,\mathrm{GeV}$.