Showing 10 of 157 results
A search for long-lived particles (LLPs) produced in decays of standard model (SM) Higgs bosons is presented. The data sample consists of 137 fb$^{-1}$ of proton-proton collisions at $\sqrt{s} =$ 13 TeV, recorded at the LHC in 2016-2018. A novel technique is employed to reconstruct decays of LLPs in the endcap muon detectors. The search is sensitive to a broad range of LLP decay modes and to masses as low as a few GeV. No excess of events above the SM background is observed. The most stringent limits to date on the branching fraction of the Higgs boson to LLPs subsequently decaying to quarks and $\tau^+\tau^-$ are found for proper decay lengths greater than 6, 20, and 40 m, for LLP masses of 7, 15, and 40 GeV, respectively.
The 95% CL observed and expected limits on the branching fraction B(H $\rightarrow$ SS) for 7 GeV mass and $ S \rightarrow d\bar{d}$ decay mode.
The 95% CL observed and expected limits on the branching fraction B(H $\rightarrow$ SS) for 15 GeV mass and $ S \rightarrow d\bar{d}$ decay mode.
The 95% CL observed and expected limits on the branching fraction B(H $\rightarrow$ SS) for 40 GeV mass and $ S \rightarrow d\bar{d}$ decay mode.
The 95% CL observed and expected limits on the branching fraction B(H $\rightarrow$ SS) for 55 GeV mass and $ S \rightarrow d\bar{d}$ decay mode.
The 95% CL observed and expected limits on the branching fraction B(H $\rightarrow$ SS) for 7 GeV mass and $ S \rightarrow \tau^{+} \tau^{-}$ decay mode.
The 95% CL observed and expected limits on the branching fraction B(H $\rightarrow$ SS) for 15 GeV mass and $ S \rightarrow \tau^{+} \tau^{-}$ decay mode.
The 95% CL observed and expected limits on the branching fraction B(H $\rightarrow$ SS) for 40 GeV mass and $ S \rightarrow \tau^{+} \tau^{-}$ decay mode.
The 95% CL observed and expected limits on the branching fraction B(H $\rightarrow$ SS) for 55 GeV mass and $ S \rightarrow \tau^{+} \tau^{-}$ decay mode.
The 95% CL observed and expected limits on the branching fraction B(H $\rightarrow$ SS) for 15 GeV mass and $ S \rightarrow b\bar{b}$ decay mode.
The 95% CL observed and expected limits on the branching fraction B(H $\rightarrow$ SS) for 40 GeV mass and $ S \rightarrow b\bar{b}$ decay mode.
The 95% CL observed and expected limits on the branching fraction B(H $\rightarrow$ SS) for 55 GeV mass and $ S \rightarrow b\bar{b}$ decay mode.
The cluster efficiency in bins of hadronic and EM energy in region A. Region A is defined as 391 cm $< r <$ 695.5 cm and 400 cm $< |z| <$ 671 cm. The cluster efficiency is estimated with LLPs decaying to $\tau^{+} \tau^{-}$. The sample contains equal fractions of events with LLP mass of 7, 15, 40, and 55 GeV and LLP lifetime of 0.1, 1, 10, and 100m. The first hadronic energy bins correspond to LLPs that decayed leptonically with 0 hadronic energy. The cluster efficiency includes all cluster-level selections described in the paper, except for the jet veto, time cut, and $\Delta\phi$ cut. The full simulation signal yield prediction for samples with various LLP mass between 7 - 55 GeV, lifetime between 0.1 - 100 m, and decay mode to $d\bar{d}$ and $\tau^{+} \tau^{-}$ can be reproduced using this parameterization to within 35% and 20% for region A and B, respectively.
The cluster efficiency in bins of hadronic and EM energy in region B. Region B is defined as 671 cm $< |z| <$ 1100 cm, $r <$ 695.5 cm, and $|\eta| <$ 2. The cluster efficiency is estimated with LLPs decaying to $\tau^{+} \tau^{-}$. The sample contains equal fractions of events with LLP mass of 7, 15, 40, and 55 GeV and LLP lifetime of 0.1, 1, 10, and 100m. The first hadronic energy bins correspond to LLPs that decayed leptonically with 0 hadronic energy. The cluster efficiency includes all cluster-level selections described in the paper, except for the jet veto, time cut, and $\Delta\phi$ cut. The full simulation signal yield prediction for samples with various LLP mass between 7 - 55 GeV, lifetime between 0.1 - 100 m, and decay mode to $d\bar{d}$ and $\tau^{+} \tau^{-}$ can be reproduced using this parameterization to within 35% and 20% for region A and B, respectively.
The efficiency of $N_{station} > 1$ requirement in bins of hadronic energy in region B. Region B is defined as 671 cm $< |z| <$ 1100 cm, $r <$ 695.5 cm, and $|\eta| <$ 2. The cluster efficiency is estimated with LLPs decaying to $\tau^{+} \tau^{-}$. The sample contains equal fractions of events with LLP mass of 7, 15, 40, and 55 GeV and LLP lifetime of 0.1, 1, 10, and 100m. The first hadronic energy bin corresponds to LLPs that decayed leptonically with 0 hadronic energy. The efficiency is calculated with respect to clusters that pass all cluster-level cuts described in the paper, except for the jet veto, time cut, and $\Delta\phi$ cut. The full simulation signal yield prediction for samples with various LLP mass between 7 - 55 GeV, lifetime between 0.1 - 100 m, and decay mode to $d\bar{d}$ and $\tau^{+} \tau^{-}$ can be reproduced using this parameterization to within 10%.
The geometric signal acceptance as a function of $c\tau$. The acceptance is shown for four different LLP mass hypotheses: 7, 15, 40, and 55 GeV. The acceptance is defined by requiring at least 1 LLP to decay in the region defined as 400 cm $< |z| <$ 1100 cm, $r < $ 695.5 cm, and $|\eta| <$ 2.4.
The production cross section of a top quark pair in association with a photon is measured in proton-proton collisions at a center-of-mass energy of 13 TeV. The data set, corresponding to an integrated luminosity of 137 fb$^{-1}$, was recorded by the CMS experiment during the 2016-2018 data taking of the LHC. The measurements are performed in a fiducial volume defined at the particle level. Events with an isolated, highly energetic lepton, at least three jets from the hadronization of quarks, among which at least one is b tagged, and one isolated photon are selected. The inclusive fiducial $\mathrm{t\overline{t}}\gamma$ cross section, for a photon with transverse momentum greater than 20 GeV and pseudorapidity $\lvert \eta\rvert$$\lt$ 1.4442, is measured to be 798 $\pm$ 7 (stat) $\pm$ 48 (syst) fb, in good agreement with the prediction from the standard model at next-to-leading order in quantum chromodynamics. The differential cross sections are also measured as a function of several kinematic observables and interpreted in the framework of the standard model effective field theory (EFT), leading to the most stringent direct limits to date on anomalous electromagnetic dipole moment interactions of the top quark and the photon.
Distribution of $p_{T}(\gamma)$ in the $N_{jet}\geq 3$ signal region.
Distribution of $m_{T}(W)$ in the $N_{jet}\geq 3$ signal region.
Distribution of $M_{3}$ in the $N_{jet}\geq 3$ signal region.
Distribution of $m(l,\gamma)$ in the $N_{jet}\geq 3$ signal region.
Distribution of $\Delta R(l,\gamma)$ in the $N_{jet}\geq 3$ signal region.
Distribution of $\Delta R(j,\gamma)$ in the $N_{jet}\geq 3$ signal region.
Fit result of the multijet template obtained with loosely isolated leptons and the electroweak background to the measured $m_{T}(W)$ distribution with isolated leptons in the $N_{jet}=2$, $N_{b jet}=0$ selection for electrons.
Fit result of the multijet template obtained with loosely isolated leptons and the electroweak background to the measured $m_{T}(W)$ distribution with isolated leptons in the $N_{jet}=2$, $N_{b jet}=0$ selection for muons.
Distribution of the invariant mass of the lepton and the photon ($m(l,\gamma)$) in the $N_{jet}\geq 3$, $N_{b jet}=0$ selection for the e channel.
Distribution of the invariant mass of the lepton and the photon ($m(l,\gamma)$) in the $N_{jet}\geq 3$, $N_{b jet}=0$ selection for the $\mu$ channel.
Extracted scale factors for the contribution from misidentified electrons for the three data-taking periods, and the Z$\gamma$, W$\gamma$ simulations.
Predicted and observed yields in the control regions in the $N_{jet}= 3$ and $\geq 4$ seletions using the post-fit values of the nuisance parameters.
Predicted and observed yields in the signal regions in the $N_{jet}= 3$ and $\geq 4$ seletions using the post-fit values of the nuisance parameters.
The measured inclusive ttgamma cross section in the fiducial phase space compared to the prediction from simulation using Madgraph_aMC@NLO at a center-of-mass energy of 13 TeV.
Summary of the measured cross section ratios with respect to the NLO cross section prediction for signal regions binned in the electron channel, muon channel and the combined single lepton measurement.
The unfolded differential cross sections for $p_{T}(\gamma)$ and the comparison to simulations.
The unfolded differential cross sections for $|\eta(\gamma)|$ and the comparison to simulations.
The unfolded differential cross sections for $\Delta R(l,\gamma)$ and the comparison to simulations.
The covariance matrix of systematic uncertainties for the unfolded differential measurement for $p_{T}(\gamma)$.
The covariance matrix of systematic uncertainties for the unfolded differential measurement for $|\eta(\gamma)|$.
The covariance matrix of systematic uncertainties for the unfolded differential measurement for $\Delta R(l,\gamma)$.
The covariance matrix of statistic uncertainties for the unfolded differential measurement for $p_{T}(\gamma)$.
The covariance matrix of statistic uncertainties for the unfolded differential measurement for $|\eta(\gamma)|$.
The covariance matrix of statistic uncertainties for the unfolded differential measurement for $\Delta R(l,\gamma)$.
The correlation matrix of statistical uncertainties for the unfolded differential measurement for $p_{T}(\gamma)$.
The correlation matrix of statistical uncertainties for the unfolded differential measurement for $|\eta(\gamma)|$.
The correlation matrix of statistical uncertainties for the unfolded differential measurement for $\Delta R(l,\gamma)$.
The correlation matrix of systematic uncertainties for the unfolded differential measurement for $p_{T}(\gamma)$.
The correlation matrix of systematic uncertainties for the unfolded differential measurement for $|\eta(\gamma)|$.
The correlation matrix of systematic uncertainties for the unfolded differential measurement for $\Delta R(l,\gamma)$.
Summary of the one-dimensional intervals at 68 and 95% CL.
The observed and predicted post-fit yields for the combined Run 2 data set in the SR3 signal region for the electron channel.
The observed and predicted post-fit yields for the combined Run 2 data set in the SR3 signal region for the muon channel.
The observed and predicted post-fit yields for the combined Run 2 data set in the SR4p signal region for the electron channel.
The observed and predicted post-fit yields for the combined Run 2 data set in the SR4p signal region for the muon channel.
Negative log-likelihood ratio values with respect to the best fit value of the one-dimensional profiled scan for the Wilson coefficient $c_{tZ}$.
Negative log-likelihood ratio values with respect to the best fit value of the one-dimensional profiled scan for the Wilson coefficient $c^{I}_{tZ}$.
Negative log-likelihood ratio values with respect to the best fit value of the one-dimensional scan for the Wilson coefficient $c_{tZ}$.
Negative log-likelihood ratio values with respect to the best fit value of the one-dimensional scan for the Wilson coefficient $c^{I}_{tZ}$.
Negative log-likelihood ratio values with respect to the best fit value of the two-dimensional scan for the Wilson coefficients $c_{tZ}$ and $c^{I}_{tZ}$.
A search for chargino$-$neutralino pair production in three-lepton final states with missing transverse momentum is presented. The study is based on a dataset of $\sqrt{s} = 13$ TeV $pp$ collisions recorded with the ATLAS detector at the LHC, corresponding to an integrated luminosity of 139 fb$^{-1}$. No significant excess relative to the Standard Model predictions is found in data. The results are interpreted in simplified models of supersymmetry, and statistically combined with results from a previous ATLAS search for compressed spectra in two-lepton final states. Various scenarios for the production and decay of charginos ($\tilde\chi^\pm_1$) and neutralinos ($\tilde\chi^0_2$) are considered. For pure higgsino $\tilde\chi^\pm_1\tilde\chi^0_2$ pair-production scenarios, exclusion limits at 95% confidence level are set on $\tilde\chi^0_2$ masses up to 210 GeV. Limits are also set for pure wino $\tilde\chi^\pm_1\tilde\chi^0_2$ pair production, on $\tilde\chi^0_2$ masses up to 640 GeV for decays via on-shell $W$ and $Z$ bosons, up to 300 GeV for decays via off-shell $W$ and $Z$ bosons, and up to 190 GeV for decays via $W$ and Standard Model Higgs bosons.
This is the HEPData space for the ATLAS SUSY EWK three-lepton search. The full resolution figures can be found at https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/SUSY-2019-09/ The full statistical likelihoods have been provided for this analysis. They can be downloaded by clicking on the purple 'Resources' button above and selecting the 'Common Resources' category. <b>Region yields:</b> <ul display="inline-block"> <li><a href="?table=Tab%2012%20Onshell%20WZ%20Signal%20Region%20Yields%20Table">Tab 12 Onshell WZ Signal Region Yields Table</a> <li><a href="?table=Tab%2013%20Onshell%20Wh%20Signal%20Region%20Yields%20Table">Tab 13 Onshell Wh Signal Region Yields Table</a> <li><a href="?table=Tab%2014%20Offshell%20low-$E_{T}^{miss}$%20Signal%20Region%20Yields%20Table">Tab 14 Offshell low-$E_{T}^{miss}$ Signal Region Yields Table</a> <li><a href="?table=Tab%2015%20Offshell%20high-$E_{T}^{miss}$%20Signal%20Region%20Yields%20Table">Tab 15 Offshell high-$E_{T}^{miss}$ Signal Region Yields Table</a> <li><a href="?table=Tab%2020%20RJR%20Signal%20Region%20Yields%20Table">Tab 20 RJR Signal Region Yields Table</a> <li><a href="?table=Fig%204%20Onshell%20Control%20and%20Validation%20Region%20Yields">Fig 4 Onshell Control and Validation Region Yields</a> <li><a href="?table=Fig%208%20Offshell%20Control%20and%20Validation%20Region%20Yields">Fig 8 Offshell Control and Validation Region Yields</a> <li><a href="?table=Fig%2010%20Onshell%20WZ%20Signal%20Region%20Yields">Fig 10 Onshell WZ Signal Region Yields</a> <li><a href="?table=Fig%2011%20Onshell%20Wh%20Signal%20Region%20Yields">Fig 11 Onshell Wh Signal Region Yields</a> <li><a href="?table=Fig%2012%20Offshell%20Signal%20Region%20Yields">Fig 12 Offshell Signal Region Yields</a> <li><a href="?table=Fig%2018%20RJR%20Control%20and%20Validation%20Region%20Yields">Fig 18 RJR Control and Validation Region Yields</a> </ul> <b>Exclusion contours:</b> <ul display="inline-block"> <li><a href="?table=Fig%2016a%20WZ%20Exclusion:%20Wino-bino(%2b),%20Obs">Fig 16a WZ Exclusion: Wino-bino(+), Obs</a> <li><a href="?table=Fig%2016a%20WZ%20Exclusion:%20Wino-bino(%2b),%20Obs_Up">Fig 16a WZ Exclusion: Wino-bino(+), Obs_Up</a> <li><a href="?table=Fig%2016a%20WZ%20Exclusion:%20Wino-bino(%2b),%20Obs_Down">Fig 16a WZ Exclusion: Wino-bino(+), Obs_Down</a> <li><a href="?table=Fig%2016a%20WZ%20Exclusion:%20Wino-bino(%2b),%20Exp">Fig 16a WZ Exclusion: Wino-bino(+), Exp</a> <li><a href="?table=Fig%2016a%20WZ%20Exclusion:%20Wino-bino(%2b),%20Exp_Up">Fig 16a WZ Exclusion: Wino-bino(+), Exp_Up</a> <li><a href="?table=Fig%2016a%20WZ%20Exclusion:%20Wino-bino(%2b),%20Exp_Down">Fig 16a WZ Exclusion: Wino-bino(+), Exp_Down</a> <li><a href="?table=Fig%2016a%20WZ%20Exclusion:%20Wino-bino(%2b),%20compressed_Obs">Fig 16a WZ Exclusion: Wino-bino(+), compressed_Obs</a> <li><a href="?table=Fig%2016a%20WZ%20Exclusion:%20Wino-bino(%2b),%20compressed_Exp">Fig 16a WZ Exclusion: Wino-bino(+), compressed_Exp</a> <li><a href="?table=Fig%2016a%20WZ%20Exclusion:%20Wino-bino(%2b),%20offshell_Obs">Fig 16a WZ Exclusion: Wino-bino(+), offshell_Obs</a> <li><a href="?table=Fig%2016a%20WZ%20Exclusion:%20Wino-bino(%2b),%20offshell_Exp">Fig 16a WZ Exclusion: Wino-bino(+), offshell_Exp</a> <li><a href="?table=Fig%2016a%20WZ%20Exclusion:%20Wino-bino(%2b),%20onshell_Obs">Fig 16a WZ Exclusion: Wino-bino(+), onshell_Obs</a> <li><a href="?table=Fig%2016a%20WZ%20Exclusion:%20Wino-bino(%2b),%20onshell_Exp">Fig 16a WZ Exclusion: Wino-bino(+), onshell_Exp</a> <li><a href="?table=Fig%2016b%20WZ%20Exclusion:%20Wino-bino(%2b)%20($\Delta%20m$),%20Obs">Fig 16b WZ Exclusion: Wino-bino(+) ($\Delta m$), Obs</a> <li><a href="?table=Fig%2016b%20WZ%20Exclusion:%20Wino-bino(%2b)%20($\Delta%20m$),%20Obs_Up">Fig 16b WZ Exclusion: Wino-bino(+) ($\Delta m$), Obs_Up</a> <li><a href="?table=Fig%2016b%20WZ%20Exclusion:%20Wino-bino(%2b)%20($\Delta%20m$),%20Obs_Down">Fig 16b WZ Exclusion: Wino-bino(+) ($\Delta m$), Obs_Down</a> <li><a href="?table=Fig%2016b%20WZ%20Exclusion:%20Wino-bino(%2b)%20($\Delta%20m$),%20Exp">Fig 16b WZ Exclusion: Wino-bino(+) ($\Delta m$), Exp</a> <li><a href="?table=Fig%2016b%20WZ%20Exclusion:%20Wino-bino(%2b)%20($\Delta%20m$),%20Exp_Up">Fig 16b WZ Exclusion: Wino-bino(+) ($\Delta m$), Exp_Up</a> <li><a href="?table=Fig%2016b%20WZ%20Exclusion:%20Wino-bino(%2b)%20($\Delta%20m$),%20Exp_Down">Fig 16b WZ Exclusion: Wino-bino(+) ($\Delta m$), Exp_Down</a> <li><a href="?table=Fig%2016b%20WZ%20Exclusion:%20Wino-bino(%2b)%20($\Delta%20m$),%20compressed_Obs">Fig 16b WZ Exclusion: Wino-bino(+) ($\Delta m$), compressed_Obs</a> <li><a href="?table=Fig%2016b%20WZ%20Exclusion:%20Wino-bino(%2b)%20($\Delta%20m$),%20compressed_Exp">Fig 16b WZ Exclusion: Wino-bino(+) ($\Delta m$), compressed_Exp</a> <li><a href="?table=Fig%2016b%20WZ%20Exclusion:%20Wino-bino(%2b)%20($\Delta%20m$),%20offshell_Obs">Fig 16b WZ Exclusion: Wino-bino(+) ($\Delta m$), offshell_Obs</a> <li><a href="?table=Fig%2016b%20WZ%20Exclusion:%20Wino-bino(%2b)%20($\Delta%20m$),%20offshell_Exp">Fig 16b WZ Exclusion: Wino-bino(+) ($\Delta m$), offshell_Exp</a> <li><a href="?table=Fig%2016b%20WZ%20Exclusion:%20Wino-bino(%2b)%20($\Delta%20m$),%20onshell_Obs">Fig 16b WZ Exclusion: Wino-bino(+) ($\Delta m$), onshell_Obs</a> <li><a href="?table=Fig%2016b%20WZ%20Exclusion:%20Wino-bino(%2b)%20($\Delta%20m$),%20onshell_Exp">Fig 16b WZ Exclusion: Wino-bino(+) ($\Delta m$), onshell_Exp</a> <li><a href="?table=Fig%2016c%20WZ%20Exclusion:%20Wino-bino(-)%20($\Delta%20m$),%20Obs">Fig 16c WZ Exclusion: Wino-bino(-) ($\Delta m$), Obs</a> <li><a href="?table=Fig%2016c%20WZ%20Exclusion:%20Wino-bino(-)%20($\Delta%20m$),%20Obs_Up">Fig 16c WZ Exclusion: Wino-bino(-) ($\Delta m$), Obs_Up</a> <li><a href="?table=Fig%2016c%20WZ%20Exclusion:%20Wino-bino(-)%20($\Delta%20m$),%20Obs_Down">Fig 16c WZ Exclusion: Wino-bino(-) ($\Delta m$), Obs_Down</a> <li><a href="?table=Fig%2016c%20WZ%20Exclusion:%20Wino-bino(-)%20($\Delta%20m$),%20Exp">Fig 16c WZ Exclusion: Wino-bino(-) ($\Delta m$), Exp</a> <li><a href="?table=Fig%2016c%20WZ%20Exclusion:%20Wino-bino(-)%20($\Delta%20m$),%20Exp_Up">Fig 16c WZ Exclusion: Wino-bino(-) ($\Delta m$), Exp_Up</a> <li><a href="?table=Fig%2016c%20WZ%20Exclusion:%20Wino-bino(-)%20($\Delta%20m$),%20Exp_Down">Fig 16c WZ Exclusion: Wino-bino(-) ($\Delta m$), Exp_Down</a> <li><a href="?table=Fig%2016c%20WZ%20Exclusion:%20Wino-bino(-)%20($\Delta%20m$),%20compressed_Obs">Fig 16c WZ Exclusion: Wino-bino(-) ($\Delta m$), compressed_Obs</a> <li><a href="?table=Fig%2016c%20WZ%20Exclusion:%20Wino-bino(-)%20($\Delta%20m$),%20compressed_Exp">Fig 16c WZ Exclusion: Wino-bino(-) ($\Delta m$), compressed_Exp</a> <li><a href="?table=Fig%2016c%20WZ%20Exclusion:%20Wino-bino(-)%20($\Delta%20m$),%20offshell_Obs">Fig 16c WZ Exclusion: Wino-bino(-) ($\Delta m$), offshell_Obs</a> <li><a href="?table=Fig%2016c%20WZ%20Exclusion:%20Wino-bino(-)%20($\Delta%20m$),%20offshell_Exp">Fig 16c WZ Exclusion: Wino-bino(-) ($\Delta m$), offshell_Exp</a> <li><a href="?table=Fig%2016d%20WZ%20Exclusion:%20Higgsino%20($\Delta%20m$),%20Obs">Fig 16d WZ Exclusion: Higgsino ($\Delta m$), Obs</a> <li><a href="?table=Fig%2016d%20WZ%20Exclusion:%20Higgsino%20($\Delta%20m$),%20Obs_Up">Fig 16d WZ Exclusion: Higgsino ($\Delta m$), Obs_Up</a> <li><a href="?table=Fig%2016d%20WZ%20Exclusion:%20Higgsino%20($\Delta%20m$),%20Obs_Down">Fig 16d WZ Exclusion: Higgsino ($\Delta m$), Obs_Down</a> <li><a href="?table=Fig%2016d%20WZ%20Exclusion:%20Higgsino%20($\Delta%20m$),%20Exp">Fig 16d WZ Exclusion: Higgsino ($\Delta m$), Exp</a> <li><a href="?table=Fig%2016d%20WZ%20Exclusion:%20Higgsino%20($\Delta%20m$),%20Exp_Up">Fig 16d WZ Exclusion: Higgsino ($\Delta m$), Exp_Up</a> <li><a href="?table=Fig%2016d%20WZ%20Exclusion:%20Higgsino%20($\Delta%20m$),%20Exp_Down">Fig 16d WZ Exclusion: Higgsino ($\Delta m$), Exp_Down</a> <li><a href="?table=Fig%2016d%20WZ%20Exclusion:%20Higgsino%20($\Delta%20m$),%20compressed_Obs">Fig 16d WZ Exclusion: Higgsino ($\Delta m$), compressed_Obs</a> <li><a href="?table=Fig%2016d%20WZ%20Exclusion:%20Higgsino%20($\Delta%20m$),%20compressed_Exp">Fig 16d WZ Exclusion: Higgsino ($\Delta m$), compressed_Exp</a> <li><a href="?table=Fig%2016d%20WZ%20Exclusion:%20Higgsino%20($\Delta%20m$),%20offshell_Obs">Fig 16d WZ Exclusion: Higgsino ($\Delta m$), offshell_Obs</a> <li><a href="?table=Fig%2016d%20WZ%20Exclusion:%20Higgsino%20($\Delta%20m$),%20offshell_Exp">Fig 16d WZ Exclusion: Higgsino ($\Delta m$), offshell_Exp</a> <li><a href="?table=Fig%2017%20Wh%20Exclusion,%20Obs">Fig 17 Wh Exclusion, Obs</a> <li><a href="?table=Fig%2017%20Wh%20Exclusion,%20Obs_Up">Fig 17 Wh Exclusion, Obs_Up</a> <li><a href="?table=Fig%2017%20Wh%20Exclusion,%20Obs_Down">Fig 17 Wh Exclusion, Obs_Down</a> <li><a href="?table=Fig%2017%20Wh%20Exclusion,%20Exp">Fig 17 Wh Exclusion, Exp</a> <li><a href="?table=Fig%2017%20Wh%20Exclusion,%20Exp_Up">Fig 17 Wh Exclusion, Exp_Up</a> <li><a href="?table=Fig%2017%20Wh%20Exclusion,%20Exp_Down">Fig 17 Wh Exclusion, Exp_Down</a> </ul> <b>Upper limits:</b> <ul display="inline-block"> <li><a href="?table=AuxFig%208a%20WZ%20Excl.%20Upper%20Limit%20Obs.%20Wino-bino(%2b)%20($\Delta%20m$)">AuxFig 8a WZ Excl. Upper Limit Obs. Wino-bino(+) ($\Delta m$)</a> <li><a href="?table=AuxFig%208b%20WZ%20Excl.%20Upper%20Limit%20Exp.%20Wino-bino(%2b)%20($\Delta%20m$)">AuxFig 8b WZ Excl. Upper Limit Exp. Wino-bino(+) ($\Delta m$)</a> <li><a href="?table=AuxFig%208c%20WZ%20Excl.%20Upper%20Limit%20Obs.%20Wino-bino(%2b)%20($\Delta%20m$)">AuxFig 8c WZ Excl. Upper Limit Obs. Wino-bino(+) ($\Delta m$)</a> <li><a href="?table=AuxFig%208d%20WZ%20Excl.%20Upper%20Limit%20Exp.%20Wino-bino(%2b)%20($\Delta%20m$)">AuxFig 8d WZ Excl. Upper Limit Exp. Wino-bino(+) ($\Delta m$)</a> <li><a href="?table=AuxFig%208e%20WZ%20Excl.%20Upper%20Limit%20Obs.%20Wino-bino(-)%20($\Delta%20m$)">AuxFig 8e WZ Excl. Upper Limit Obs. Wino-bino(-) ($\Delta m$)</a> <li><a href="?table=AuxFig%208f%20WZ%20Excl.%20Upper%20Limit%20Exp.%20Wino-bino(-)%20($\Delta%20m$)">AuxFig 8f WZ Excl. Upper Limit Exp. Wino-bino(-) ($\Delta m$)</a> <li><a href="?table=AuxFig%208g%20WZ%20Excl.%20Upper%20Limit%20Obs.%20Higgsino%20($\Delta%20m$)">AuxFig 8g WZ Excl. Upper Limit Obs. Higgsino ($\Delta m$)</a> <li><a href="?table=AuxFig%208h%20WZ%20Excl.%20Upper%20Limit%20Exp.%20Higgsino%20($\Delta%20m$)">AuxFig 8h WZ Excl. Upper Limit Exp. Higgsino ($\Delta m$)</a> <li><a href="?table=AuxFig%209a%20Wh%20Excl.%20Upper%20Limit%20Obs.">AuxFig 9a Wh Excl. Upper Limit Obs.</a> <li><a href="?table=AuxFig%209b%20Wh%20Excl.%20Upper%20Limit%20Exp.">AuxFig 9b Wh Excl. Upper Limit Exp.</a> </ul> <b>Model-independent discovery fits:</b> <ul display="inline-block"> <li><a href="?table=Tab%2018%20Onshell%20Discovery%20Fit%20Table">Tab 18 Onshell Discovery Fit Table</a> <li><a href="?table=Tab%2019%20Offshell%20Discovery%20Fit%20Table">Tab 19 Offshell Discovery Fit Table</a> <li><a href="?table=Tab%2021%20RJR%20Discovery%20Fit%20Table">Tab 21 RJR Discovery Fit Table</a> </ul> <b>Kinematic distributions:</b> <ul display="inline-block"> <li><a href="?table=Fig%2013a%20SR$_{DFOS}^{Wh}$-1%20($\Delta%20R_{OS,%20near}$)">Fig 13a SR$_{DFOS}^{Wh}$-1 ($\Delta R_{OS, near}$)</a> <li><a href="?table=Fig%2013b%20SR$_{DFOS}^{Wh}$-2%20(3rd%20Lep.%20$p_{T}$)">Fig 13b SR$_{DFOS}^{Wh}$-2 (3rd Lep. $p_{T}$)</a> <li><a href="?table=Fig%2013c%20SR$_{0j}^{WZ}$%20($E_{T}^{miss}$)">Fig 13c SR$_{0j}^{WZ}$ ($E_{T}^{miss}$)</a> <li><a href="?table=Fig%2013d%20SR$_{0j}^{WZ}$%20($m_{T}$)">Fig 13d SR$_{0j}^{WZ}$ ($m_{T}$)</a> <li><a href="?table=Fig%2014a%20SR$^{offWZ}_{LowETmiss}$-0j%20($m_{T}^{minmll}$)">Fig 14a SR$^{offWZ}_{LowETmiss}$-0j ($m_{T}^{minmll}$)</a> <li><a href="?table=Fig%2014b%20SR$^{offWZ}_{LowETmiss}$-nj%20($m_{T}^{minmll}$)">Fig 14b SR$^{offWZ}_{LowETmiss}$-nj ($m_{T}^{minmll}$)</a> <li><a href="?table=Fig%2014c%20SR$^{offWZ}_{HighETmiss}$-0j%20($m_{T}^{minmll}$)">Fig 14c SR$^{offWZ}_{HighETmiss}$-0j ($m_{T}^{minmll}$)</a> <li><a href="?table=Fig%2014d%20SR$^{offWZ}_{HighETmiss}$-nj%20($p_T^l%20\div%20E_T^{miss}$)">Fig 14d SR$^{offWZ}_{HighETmiss}$-nj ($p_T^l \div E_T^{miss}$)</a> <li><a href="?table=Fig%2020a%20RJR%20SR3$\ell$-Low%20($p_{T}^{\ell%201}$)">Fig 20a RJR SR3$\ell$-Low ($p_{T}^{\ell 1}$)</a> <li><a href="?table=Fig%2020b%20RJR%20SR3$\ell$-Low%20($H_{3,1}^{PP}$)">Fig 20b RJR SR3$\ell$-Low ($H_{3,1}^{PP}$)</a> <li><a href="?table=Fig%2020c%20RJR%20SR3$\ell$-ISR%20($p_{T~ISR}^{CM}$)">Fig 20c RJR SR3$\ell$-ISR ($p_{T~ISR}^{CM}$)</a> <li><a href="?table=Fig%2020d%20RJR%20SR3$\ell$-ISR%20($R_{ISR}$)">Fig 20d RJR SR3$\ell$-ISR ($R_{ISR}$)</a> </ul> <b>Cutflows:</b> <ul display="inline-block"> <li><a href="?table=AuxTab%205%20Cutflow:%20Onshell%20WZ">AuxTab 5 Cutflow: Onshell WZ</a> <li><a href="?table=AuxTab%206%20Cutflow:%20Onshell%20Wh">AuxTab 6 Cutflow: Onshell Wh</a> <li><a href="?table=AuxTab%207%20Cutflow:%20Offshell%20Wino-bino(%2b)%20(250,235)">AuxTab 7 Cutflow: Offshell Wino-bino(+) (250,235)</a> <li><a href="?table=AuxTab%208%20Cutflow:%20Offshell%20Wino-bino(%2b)%20(125,85)">AuxTab 8 Cutflow: Offshell Wino-bino(+) (125,85)</a> <li><a href="?table=AuxTab%209%20Cutflow:%20Offshell%20Wino-bino(%2b)%20(250,170)">AuxTab 9 Cutflow: Offshell Wino-bino(+) (250,170)</a> <li><a href="?table=AuxTab%2010%20Cutflow:%20Offshell%20Wino-bino(-)%20(250,235)">AuxTab 10 Cutflow: Offshell Wino-bino(-) (250,235)</a> <li><a href="?table=AuxTab%2011%20Cutflow:%20Offshell%20Wino-bino(-)%20(125,85)">AuxTab 11 Cutflow: Offshell Wino-bino(-) (125,85)</a> <li><a href="?table=AuxTab%2012%20Cutflow:%20Offshell%20Wino-bino(-)%20(250,170)">AuxTab 12 Cutflow: Offshell Wino-bino(-) (250,170)</a> <li><a href="?table=AuxTab%2013%20Cutflow:%20Offshell%20Higgsino%20(120,100)">AuxTab 13 Cutflow: Offshell Higgsino (120,100)</a> <li><a href="?table=AuxTab%2014%20Cutflow:%20Offshell%20Higgsino%20(100,40)">AuxTab 14 Cutflow: Offshell Higgsino (100,40)</a> <li><a href="?table=AuxTab%2015%20Cutflow:%20Offshell%20Higgsino%20(185,125)">AuxTab 15 Cutflow: Offshell Higgsino (185,125)</a> </ul> <b>Acceptances and Efficiencies:</b> <ul display="inline-block"> <li><a href="?table=AuxFig%2010a%20Acc:%20Onshell%20SR$_{0j}^{WZ}$">AuxFig 10a Acc: Onshell SR$_{0j}^{WZ}$</a> <li><a href="?table=AuxFig%2010b%20Eff:%20Onshell%20SR$_{0j}^{WZ}$">AuxFig 10b Eff: Onshell SR$_{0j}^{WZ}$</a> <li><a href="?table=AuxFig%2010c%20Acc:%20Onshell%20SR$_{nj}^{WZ}$">AuxFig 10c Acc: Onshell SR$_{nj}^{WZ}$</a> <li><a href="?table=AuxFig%2010d%20Eff:%20Onshell%20SR$_{nj}^{WZ}$">AuxFig 10d Eff: Onshell SR$_{nj}^{WZ}$</a> <li><a href="?table=AuxFig%2011a%20Acc:%20Onshell%20SR$_{low-m_{ll}-0j}^{Wh}$">AuxFig 11a Acc: Onshell SR$_{low-m_{ll}-0j}^{Wh}$</a> <li><a href="?table=AuxFig%2011b%20Eff:%20Onshell%20SR$_{low-m_{ll}-0j}^{Wh}$">AuxFig 11b Eff: Onshell SR$_{low-m_{ll}-0j}^{Wh}$</a> <li><a href="?table=AuxFig%2011c%20Acc:%20Onshell%20SR$_{low-m_{ll}-nj}^{Wh}$">AuxFig 11c Acc: Onshell SR$_{low-m_{ll}-nj}^{Wh}$</a> <li><a href="?table=AuxFig%2011d%20Eff:%20Onshell%20SR$_{low-m_{ll}-nj}^{Wh}$">AuxFig 11d Eff: Onshell SR$_{low-m_{ll}-nj}^{Wh}$</a> <li><a href="?table=AuxFig%2011e%20Acc:%20Onshell%20SR$_{DFOS}^{Wh}$">AuxFig 11e Acc: Onshell SR$_{DFOS}^{Wh}$</a> <li><a href="?table=AuxFig%2011f%20Eff:%20Onshell%20SR$_{DFOS}^{Wh}$">AuxFig 11f Eff: Onshell SR$_{DFOS}^{Wh}$</a> <li><a href="?table=AuxFig%2012a%20Acc:%20Off.%20Wino-bino(%2b)%20SR$^{offWZ}_{lowETmiss}$-0j">AuxFig 12a Acc: Off. Wino-bino(+) SR$^{offWZ}_{lowETmiss}$-0j</a> <li><a href="?table=AuxFig%2012b%20Eff:%20Off.%20Wino-bino(%2b)%20SR$^{offWZ}_{lowETmiss}$-0j">AuxFig 12b Eff: Off. Wino-bino(+) SR$^{offWZ}_{lowETmiss}$-0j</a> <li><a href="?table=AuxFig%2012c%20Acc:%20Off.%20Wino-bino(%2b)%20SR$^{offWZ}_{lowETmiss}$-nj">AuxFig 12c Acc: Off. Wino-bino(+) SR$^{offWZ}_{lowETmiss}$-nj</a> <li><a href="?table=AuxFig%2012d%20Eff:%20Off.%20Wino-bino(%2b)%20SR$^{offWZ}_{lowETmiss}$-nj">AuxFig 12d Eff: Off. Wino-bino(+) SR$^{offWZ}_{lowETmiss}$-nj</a> <li><a href="?table=AuxFig%2012e%20Acc:%20Off.%20Wino-bino(%2b)%20SR$^{offWZ}_{highETmiss}$-0j">AuxFig 12e Acc: Off. Wino-bino(+) SR$^{offWZ}_{highETmiss}$-0j</a> <li><a href="?table=AuxFig%2012f%20Eff:%20Off.%20Wino-bino(%2b)%20SR$^{offWZ}_{highETmiss}$-0j">AuxFig 12f Eff: Off. Wino-bino(+) SR$^{offWZ}_{highETmiss}$-0j</a> <li><a href="?table=AuxFig%2012g%20Acc:%20Off.%20Wino-bino(%2b)%20SR$^{offWZ}_{highETmiss}$-nj">AuxFig 12g Acc: Off. Wino-bino(+) SR$^{offWZ}_{highETmiss}$-nj</a> <li><a href="?table=AuxFig%2012h%20Eff:%20Off.%20Wino-bino(%2b)%20SR$^{offWZ}_{highETmiss}$-nj">AuxFig 12h Eff: Off. Wino-bino(+) SR$^{offWZ}_{highETmiss}$-nj</a> <li><a href="?table=AuxFig%2013a%20Acc:%20Off.%20Wino-bino(-)%20SR$^{offWZ}_{lowETmiss}$-0j">AuxFig 13a Acc: Off. Wino-bino(-) SR$^{offWZ}_{lowETmiss}$-0j</a> <li><a href="?table=AuxFig%2013b%20Eff:%20Off.%20Wino-bino(-)%20SR$^{offWZ}_{lowETmiss}$-0j">AuxFig 13b Eff: Off. Wino-bino(-) SR$^{offWZ}_{lowETmiss}$-0j</a> <li><a href="?table=AuxFig%2013c%20Acc:%20Off.%20Wino-bino(-)%20SR$^{offWZ}_{lowETmiss}$-nj">AuxFig 13c Acc: Off. Wino-bino(-) SR$^{offWZ}_{lowETmiss}$-nj</a> <li><a href="?table=AuxFig%2013d%20Eff:%20Off.%20Wino-bino(-)%20SR$^{offWZ}_{lowETmiss}$-nj">AuxFig 13d Eff: Off. Wino-bino(-) SR$^{offWZ}_{lowETmiss}$-nj</a> <li><a href="?table=AuxFig%2013e%20Acc:%20Off.%20Wino-bino(-)%20SR$^{offWZ}_{highETmiss}$-0j">AuxFig 13e Acc: Off. Wino-bino(-) SR$^{offWZ}_{highETmiss}$-0j</a> <li><a href="?table=AuxFig%2013f%20Eff:%20Off.%20Wino-bino(-)%20SR$^{offWZ}_{highETmiss}$-0j">AuxFig 13f Eff: Off. Wino-bino(-) SR$^{offWZ}_{highETmiss}$-0j</a> <li><a href="?table=AuxFig%2013g%20Acc:%20Off.%20Wino-bino(-)%20SR$^{offWZ}_{highETmiss}$-nj">AuxFig 13g Acc: Off. Wino-bino(-) SR$^{offWZ}_{highETmiss}$-nj</a> <li><a href="?table=AuxFig%2013h%20Eff:%20Off.%20Wino-bino(-)%20SR$^{offWZ}_{highETmiss}$-nj">AuxFig 13h Eff: Off. Wino-bino(-) SR$^{offWZ}_{highETmiss}$-nj</a> <li><a href="?table=AuxFig%2014a%20Acc:%20Off.%20Higgsino%20SR$^{offWZ}_{lowETmiss}$-0j">AuxFig 14a Acc: Off. Higgsino SR$^{offWZ}_{lowETmiss}$-0j</a> <li><a href="?table=AuxFig%2014b%20Eff:%20Off.%20Higgsino%20SR$^{offWZ}_{lowETmiss}$-0j">AuxFig 14b Eff: Off. Higgsino SR$^{offWZ}_{lowETmiss}$-0j</a> <li><a href="?table=AuxFig%2014c%20Acc:%20Off.%20Higgsino%20SR$^{offWZ}_{lowETmiss}$-nj">AuxFig 14c Acc: Off. Higgsino SR$^{offWZ}_{lowETmiss}$-nj</a> <li><a href="?table=AuxFig%2014d%20Eff:%20Off.%20Higgsino%20SR$^{offWZ}_{lowETmiss}$-nj">AuxFig 14d Eff: Off. Higgsino SR$^{offWZ}_{lowETmiss}$-nj</a> <li><a href="?table=AuxFig%2014e%20Acc:%20Off.%20Higgsino%20SR$^{offWZ}_{highETmiss}$-0j">AuxFig 14e Acc: Off. Higgsino SR$^{offWZ}_{highETmiss}$-0j</a> <li><a href="?table=AuxFig%2014f%20Eff:%20Off.%20Higgsino%20SR$^{offWZ}_{highETmiss}$-0j">AuxFig 14f Eff: Off. Higgsino SR$^{offWZ}_{highETmiss}$-0j</a> <li><a href="?table=AuxFig%2014g%20Acc:%20Off.%20Higgsino%20SR$^{offWZ}_{highETmiss}$-nj">AuxFig 14g Acc: Off. Higgsino SR$^{offWZ}_{highETmiss}$-nj</a> <li><a href="?table=AuxFig%2014h%20Eff:%20Off.%20Higgsino%20SR$^{offWZ}_{highETmiss}$-nj">AuxFig 14h Eff: Off. Higgsino SR$^{offWZ}_{highETmiss}$-nj</a> </ul>
Comparison of the observed data and expected SM background yields in the CRs (pre-fit) and VRs (post-fit) of the onshell $W\!Z$ and $W\!h$ selections. The "Others" category contains the single-top, WW, triboson, Higgs and rare top processes. The hatched band indicates the combined theoretical, experimental, and MC statistical uncertainties. The bottom panel shows the relative difference between the observed data and expected yields for the CRs and the significance of the difference for the VRs, calculated with the profile likelihood method from [169], adding a minus sign if the yield is below the prediction.
Comparison of the observed data and expected SM background yields in the CRs and VRs of the offshell $W\!Z$ selection. The SM prediction is taken from the background-only fit. The "Others" category contains the single-top, WW, triboson, Higgs and rare top processes. The hatched band indicates the combined theoretical, experimental, and MC statistical uncertainties. The bottom panel shows the significance of the difference between the observed and expected yields, calculated with the profile likelihood method from [169], adding a minus sign if the yield is below the prediction.
Observed and expected yields after the background-only fit in the SRs for the onshell $W\!Z$ selection. The normalization factors of the $W\!Z$ sample are extracted separately for the 0j, low-H<sub>T</sub> and high-H<sub>T</sub> regions, and are treated separately in the combined fit. The "Others" category contains the single-top, WW, triboson, Higgs and rare top processes. Combined statistical and systematic uncertainties are presented.
Observed and expected yields after the background-only fit in the SRs for the $W\!h$ selection. The normalization factors of the $W\!Z$ sample are extracted separately for the 0j, low-H<sub>T</sub> and high-H<sub>T</sub> regions, and are treated separately in the combined fit. The "Others" category contains the single-top, WW, tt̄+X and rare top processes. Combined statistical and systematic uncertainties are presented.
Comparison of the observed data and expected SM background yields in the SRs of the onshell $W\!Z$ selection. The SM prediction is taken from the background-only fit. The "Others" category contains the single-top, WW, triboson, Higgs and rare top processes. The hatched band indicates the combined theoretical, experimental, and MC statistical uncertainties. Distributions for wino/bino (+) χ̃<sub>1</sub><sup>±</sup>/χ̃<sub>2</sub><sup>0</sup> → $W\!Z$ signals are overlaid, with mass values given as (m(χ̃<sub>1</sub><sup>±</sup>),m(χ̃<sub>1</sub><sup>0</sup>)) GeV. The bottom panel shows the significance of the difference between the observed and expected yields, calculated with the profile likelihood method from [169], adding a minus sign if the yield is below the prediction.
Comparison of the observed data and expected SM background yields in the SRs of the $W\!h$ selection. The SM prediction is taken from the background-only fit. The "Others" category contains the single-top, WW, tt̄+X and rare top processes. The hatched band indicates the combined theoretical, experimental, and MC statistical uncertainties. Distributions for wino/bino (+) χ̃<sub>1</sub><sup>±</sup>/χ̃<sub>2</sub><sup>0</sup> → $W\!h$ signals are overlaid, with mass values given as (m(χ̃<sub>1</sub><sup>±</sup>),m(χ̃<sub>1</sub><sup>0</sup>)) GeV. The bottom panel shows the significance of the difference between the observed and expected yields, calculated with the profile likelihood method from [169], adding a minus sign if the yield is below the prediction.
Observed and expected yields after the background-only fit in SR<sup>offWZ</sup><sub>lowETmiss</sub>. The normalization factors of the $W\!Z$ sample extracted separately for 0j and nj, and are treated separately in the combined fit. The "Others" category contains the single-top, WW, triboson, Higgs and rare top processes. Combined statistical and systematic uncertainties are presented.
Observed and expected yields after the background-only fit in SR<sup>offWZ</sup><sub>highETmiss</sub>. The normalization factors of the $W\!Z$ sample extracted separately for 0j and nj, and are treated separately in the combined fit. The "Others" category contains the single-top, WW, triboson, Higgs and rare top processes. Combined statistical and systematic uncertainties are presented.
Comparison of the observed data and expected SM background yields in the SRs of the offshell $W\!Z$ selection. The SM prediction is taken from the background-only fit. The "Others" category contains the single-top, WW, triboson, Higgs and rare top processes. The hatched band indicates the combined theoretical, experimental, and MC statistical uncertainties. Distributions for wino/bino (+) χ̃<sub>1</sub><sup>±</sup>/χ̃<sub>2</sub><sup>0</sup> → $W^{*}\!Z^{*}$ signals are overlaid, with mass values given as (m(χ̃<sub>1</sub><sup>±</sup>),m(χ̃<sub>1</sub><sup>0</sup>)) GeV. The bottom panel shows the significance of the difference between the observed and expected yields, calculated with the profile likelihood method from [169], adding a minus sign if the yield is below the prediction.
Kinematic distributions after the background-only fit showing the data and the post-fit expected background, in SRs of the onshell $W\!Z$ and $W\!h$ selections. The figure shows (a) the ΔR<sub>OS,near</sub> distribution in SR<sup>Wh</sup><sub>DF</sub>-1, (b) the 3rd leading lepton p<sub>T</sub> in SR<sup>Wh</sup><sub>DF</sub>-2, and the (c) E<sub>T</sub><sup>miss</sup> and (d) m<sub>T</sub> distributions in SR<sup>WZ</sup><sub>0j</sub> (with all SR-i bins of SR<sup>WZ</sup><sub>0j</sub> summed up). The SR selections are applied for each distribution, except for the variable shown, for which the selection is indicated by an arrow. The last bin includes overflow. The "Others" category contains backgrounds from single-top, WW, triboson, Higgs and rare top processes, except in the top panels, where triboson and Higgs production contributions are shown separately, and tt̄+X is merged into Others. Distributions for wino/bino (+) χ̃<sub>1</sub><sup>±</sup>/χ̃<sub>2</sub><sup>0</sup> → $W\!Z$/$W\!h$ signals are overlaid, with mass values given as (m(χ̃<sub>1</sub><sup>±</sup>),m(χ̃<sub>1</sub><sup>0</sup>)) GeV. The bottom panel shows the ratio of the observed data to the predicted yields. The hatched bands indicate the combined theoretical, experimental, and MC statistical uncertainties.
Kinematic distributions after the background-only fit showing the data and the post-fit expected background, in SRs of the onshell $W\!Z$ and $W\!h$ selections. The figure shows (a) the ΔR<sub>OS,near</sub> distribution in SR<sup>Wh</sup><sub>DF</sub>-1, (b) the 3rd leading lepton p<sub>T</sub> in SR<sup>Wh</sup><sub>DF</sub>-2, and the (c) E<sub>T</sub><sup>miss</sup> and (d) m<sub>T</sub> distributions in SR<sup>WZ</sup><sub>0j</sub> (with all SR-i bins of SR<sup>WZ</sup><sub>0j</sub> summed up). The SR selections are applied for each distribution, except for the variable shown, for which the selection is indicated by an arrow. The last bin includes overflow. The "Others" category contains backgrounds from single-top, WW, triboson, Higgs and rare top processes, except in the top panels, where triboson and Higgs production contributions are shown separately, and tt̄+X is merged into Others. Distributions for wino/bino (+) χ̃<sub>1</sub><sup>±</sup>/χ̃<sub>2</sub><sup>0</sup> → $W\!Z$/$W\!h$ signals are overlaid, with mass values given as (m(χ̃<sub>1</sub><sup>±</sup>),m(χ̃<sub>1</sub><sup>0</sup>)) GeV. The bottom panel shows the ratio of the observed data to the predicted yields. The hatched bands indicate the combined theoretical, experimental, and MC statistical uncertainties.
Kinematic distributions after the background-only fit showing the data and the post-fit expected background, in SRs of the onshell $W\!Z$ and $W\!h$ selections. The figure shows (a) the ΔR<sub>OS,near</sub> distribution in SR<sup>Wh</sup><sub>DF</sub>-1, (b) the 3rd leading lepton p<sub>T</sub> in SR<sup>Wh</sup><sub>DF</sub>-2, and the (c) E<sub>T</sub><sup>miss</sup> and (d) m<sub>T</sub> distributions in SR<sup>WZ</sup><sub>0j</sub> (with all SR-i bins of SR<sup>WZ</sup><sub>0j</sub> summed up). The SR selections are applied for each distribution, except for the variable shown, for which the selection is indicated by an arrow. The last bin includes overflow. The "Others" category contains backgrounds from single-top, WW, triboson, Higgs and rare top processes, except in the top panels, where triboson and Higgs production contributions are shown separately, and tt̄+X is merged into Others. Distributions for wino/bino (+) χ̃<sub>1</sub><sup>±</sup>/χ̃<sub>2</sub><sup>0</sup> → $W\!Z$/$W\!h$ signals are overlaid, with mass values given as (m(χ̃<sub>1</sub><sup>±</sup>),m(χ̃<sub>1</sub><sup>0</sup>)) GeV. The bottom panel shows the ratio of the observed data to the predicted yields. The hatched bands indicate the combined theoretical, experimental, and MC statistical uncertainties.
Kinematic distributions after the background-only fit showing the data and the post-fit expected background, in SRs of the onshell $W\!Z$ and $W\!h$ selections. The figure shows (a) the ΔR<sub>OS,near</sub> distribution in SR<sup>Wh</sup><sub>DF</sub>-1, (b) the 3rd leading lepton p<sub>T</sub> in SR<sup>Wh</sup><sub>DF</sub>-2, and the (c) E<sub>T</sub><sup>miss</sup> and (d) m<sub>T</sub> distributions in SR<sup>WZ</sup><sub>0j</sub> (with all SR-i bins of SR<sup>WZ</sup><sub>0j</sub> summed up). The SR selections are applied for each distribution, except for the variable shown, for which the selection is indicated by an arrow. The last bin includes overflow. The "Others" category contains backgrounds from single-top, WW, triboson, Higgs and rare top processes, except in the top panels, where triboson and Higgs production contributions are shown separately, and tt̄+X is merged into Others. Distributions for wino/bino (+) χ̃<sub>1</sub><sup>±</sup>/χ̃<sub>2</sub><sup>0</sup> → $W\!Z$/$W\!h$ signals are overlaid, with mass values given as (m(χ̃<sub>1</sub><sup>±</sup>),m(χ̃<sub>1</sub><sup>0</sup>)) GeV. The bottom panel shows the ratio of the observed data to the predicted yields. The hatched bands indicate the combined theoretical, experimental, and MC statistical uncertainties.
Kinematic distributions after the background-only fit showing the data and the post-fit expected background, in SRs of the offshell $W\!Z$ selection. The figure shows the m<sub>T</sub><sup>m<sub>ll</sub>min</sup> distribution in (a) SR<sup>offWZ</sup><sub>lowETmiss</sub>-0j, (b) SR<sup>offWZ</sup><sub>lowETmiss</sub>-nj and (c) SR<sup>offWZ</sup><sub>highETmiss</sub>-0j, and the |p<sub>T</sub><sup>lep</sup>|/E<sub>T</sub><sup>miss</sup> distribution in (d) SR<sup>offWZ</sup><sub>highETmiss</sub>-nj. The contributing m<sub>ll</sub><sup>min</sup> mass bins within each SR<sup>offWZ</sup> category are summed together. The SR selections are applied for each distribution, except for the variable shown, for which the selection is indicated by an arrow. The last bin includes overflow. The "Others" category contains backgrounds from single-top, WW, triboson, Higgs and rare top processes. Distributions for wino/bino (+) χ̃<sub>1</sub><sup>±</sup>/χ̃<sub>2</sub><sup>0</sup> → $W\!Z$ signals are overlaid, with mass values given as (m(χ̃<sub>1</sub><sup>±</sup>),m(χ̃<sub>1</sub><sup>0</sup>)) GeV. The bottom panel shows the ratio of the observed data to the predicted yields. The hatched bands indicate the combined theoretical, experimental, and MC statistical uncertainties.
Kinematic distributions after the background-only fit showing the data and the post-fit expected background, in SRs of the offshell $W\!Z$ selection. The figure shows the m<sub>T</sub><sup>m<sub>ll</sub>min</sup> distribution in (a) SR<sup>offWZ</sup><sub>lowETmiss</sub>-0j, (b) SR<sup>offWZ</sup><sub>lowETmiss</sub>-nj and (c) SR<sup>offWZ</sup><sub>highETmiss</sub>-0j, and the |p<sub>T</sub><sup>lep</sup>|/E<sub>T</sub><sup>miss</sup> distribution in (d) SR<sup>offWZ</sup><sub>highETmiss</sub>-nj. The contributing m<sub>ll</sub><sup>min</sup> mass bins within each SR<sup>offWZ</sup> category are summed together. The SR selections are applied for each distribution, except for the variable shown, for which the selection is indicated by an arrow. The last bin includes overflow. The "Others" category contains backgrounds from single-top, WW, triboson, Higgs and rare top processes. Distributions for wino/bino (+) χ̃<sub>1</sub><sup>±</sup>/χ̃<sub>2</sub><sup>0</sup> → $W\!Z$ signals are overlaid, with mass values given as (m(χ̃<sub>1</sub><sup>±</sup>),m(χ̃<sub>1</sub><sup>0</sup>)) GeV. The bottom panel shows the ratio of the observed data to the predicted yields. The hatched bands indicate the combined theoretical, experimental, and MC statistical uncertainties.
Kinematic distributions after the background-only fit showing the data and the post-fit expected background, in SRs of the offshell $W\!Z$ selection. The figure shows the m<sub>T</sub><sup>m<sub>ll</sub>min</sup> distribution in (a) SR<sup>offWZ</sup><sub>lowETmiss</sub>-0j, (b) SR<sup>offWZ</sup><sub>lowETmiss</sub>-nj and (c) SR<sup>offWZ</sup><sub>highETmiss</sub>-0j, and the |p<sub>T</sub><sup>lep</sup>|/E<sub>T</sub><sup>miss</sup> distribution in (d) SR<sup>offWZ</sup><sub>highETmiss</sub>-nj. The contributing m<sub>ll</sub><sup>min</sup> mass bins within each SR<sup>offWZ</sup> category are summed together. The SR selections are applied for each distribution, except for the variable shown, for which the selection is indicated by an arrow. The last bin includes overflow. The "Others" category contains backgrounds from single-top, WW, triboson, Higgs and rare top processes. Distributions for wino/bino (+) χ̃<sub>1</sub><sup>±</sup>/χ̃<sub>2</sub><sup>0</sup> → $W\!Z$ signals are overlaid, with mass values given as (m(χ̃<sub>1</sub><sup>±</sup>),m(χ̃<sub>1</sub><sup>0</sup>)) GeV. The bottom panel shows the ratio of the observed data to the predicted yields. The hatched bands indicate the combined theoretical, experimental, and MC statistical uncertainties.
Kinematic distributions after the background-only fit showing the data and the post-fit expected background, in SRs of the offshell $W\!Z$ selection. The figure shows the m<sub>T</sub><sup>m<sub>ll</sub>min</sup> distribution in (a) SR<sup>offWZ</sup><sub>lowETmiss</sub>-0j, (b) SR<sup>offWZ</sup><sub>lowETmiss</sub>-nj and (c) SR<sup>offWZ</sup><sub>highETmiss</sub>-0j, and the |p<sub>T</sub><sup>lep</sup>|/E<sub>T</sub><sup>miss</sup> distribution in (d) SR<sup>offWZ</sup><sub>highETmiss</sub>-nj. The contributing m<sub>ll</sub><sup>min</sup> mass bins within each SR<sup>offWZ</sup> category are summed together. The SR selections are applied for each distribution, except for the variable shown, for which the selection is indicated by an arrow. The last bin includes overflow. The "Others" category contains backgrounds from single-top, WW, triboson, Higgs and rare top processes. Distributions for wino/bino (+) χ̃<sub>1</sub><sup>±</sup>/χ̃<sub>2</sub><sup>0</sup> → $W\!Z$ signals are overlaid, with mass values given as (m(χ̃<sub>1</sub><sup>±</sup>),m(χ̃<sub>1</sub><sup>0</sup>)) GeV. The bottom panel shows the ratio of the observed data to the predicted yields. The hatched bands indicate the combined theoretical, experimental, and MC statistical uncertainties.
Observed (N<sub>obs</sub>) yields after the discovery-fit and expected (N<sub>exp</sub>) after the background-only fit, for the inclusive SRs of the onshell $W\!Z$ and $W\!h$ selections. The third and fourth column list the 95 CL upper limits on the visible cross-section (σ<sub>vis</sub><sup>95</sup>) and on the number of signal events (S<sub>obs</sub><sup>95</sup>). The fifth column (S<sub>exp</sub><sup>95</sup>) shows the 95 CL upper limit on the number of signal events, given the expected number (and ± 1σ excursions on the expectation) of background events. The last two columns indicate the CLb value, i.e. the confidence level observed for the background-only hypothesis, and the discovery p-value (p(s = 0)). If the observed yield is below the expected yield, the p-value is capped at 0.5.
Observed (N<sub>obs</sub>) yields after the discovery-fit and expected (N<sub>exp</sub>) after the background-only fit, for the inclusive SRs of the offshell $W\!Z$ selection. The third and fourth column list the 95 CL upper limits on the visible cross section (σ<sub>vis</sub><sup>95</sup>) and on the number of signal events (S<sub>obs</sub><sup>95</sup>). The fifth column (S<sub>exp</sub><sup>95</sup>) shows the 95 CL upper limit on the number of signal events, given the expected number (and ± 1σ excursions on the expectation) of background events. The last two columns indicate the CLb value, i.e. the confidence level observed for the background-only hypothesis, and the discovery p-value (p(s = 0)). If the observed yield is below the expected yield, the p-value is capped at 0.5.
Exclusion limits obtained for the $W\!Z$-mediated models in the (a,b) wino/bino (+) scenario, (c) the wino/bino (-) scenario, and (d) the higgsino scenario. The expected 95 CL sensitivity (dashed black line) is shown with ±1σ<sub>exp</sub> (yellow band) from experimental systematic uncertainties and statistical uncertainties on the data yields, the observed limit (red solid line) is shown with ±1σ<sub>theory</sub> (dotted red lines) from signal cross-section uncertainties. The statistical combination of the onshell $W\!Z$, offshell $W\!Z$, and compressed results is shown as the main contour, while the observed (expected) limits for each individual selection are overlaid in green, blue, and orange solid (dashed) lines, respectively. The exclusion is shown projected (a) onto the m(χ̃<sub>1</sub><sup>±</sup>, χ̃<sub>2</sub><sup>0</sup>) vs m(χ̃<sub>1</sub><sup>0</sup>) plane or (b,c,d) onto the m(χ̃<sub>2</sub><sup>0</sup>) vs Δm plane. The light grey area denotes (top) the constraints obtained by the previous equivalent analysis in ATLAS using the 8 TeV 20.3 fb<sup>-1</sup> dataset [17], and (d) the LEP lower χ̃<sub>1</sub><sup>±</sup> mass limit [56]. The pale blue line in the top right panel represents the mass splitting range that yields a dark matter relic density equal to the observed relic density, Ω h<sup>2</sup>=0.1186±0.0020 [172], when the mass parameters of all the decoupled SUSY partners are set to 5 TeV and tanβ is chosen such that the SM-like Higgs boson mass is consistent with the observed value [43]. The area above (below) the blue line represents a dark-matter relic density larger (smaller) than the observed.
Exclusion limits obtained for the $W\!Z$-mediated models in the (a,b) wino/bino (+) scenario, (c) the wino/bino (-) scenario, and (d) the higgsino scenario. The expected 95 CL sensitivity (dashed black line) is shown with ±1σ<sub>exp</sub> (yellow band) from experimental systematic uncertainties and statistical uncertainties on the data yields, the observed limit (red solid line) is shown with ±1σ<sub>theory</sub> (dotted red lines) from signal cross-section uncertainties. The statistical combination of the onshell $W\!Z$, offshell $W\!Z$, and compressed results is shown as the main contour, while the observed (expected) limits for each individual selection are overlaid in green, blue, and orange solid (dashed) lines, respectively. The exclusion is shown projected (a) onto the m(χ̃<sub>1</sub><sup>±</sup>, χ̃<sub>2</sub><sup>0</sup>) vs m(χ̃<sub>1</sub><sup>0</sup>) plane or (b,c,d) onto the m(χ̃<sub>2</sub><sup>0</sup>) vs Δm plane. The light grey area denotes (top) the constraints obtained by the previous equivalent analysis in ATLAS using the 8 TeV 20.3 fb<sup>-1</sup> dataset [17], and (d) the LEP lower χ̃<sub>1</sub><sup>±</sup> mass limit [56]. The pale blue line in the top right panel represents the mass splitting range that yields a dark matter relic density equal to the observed relic density, Ω h<sup>2</sup>=0.1186±0.0020 [172], when the mass parameters of all the decoupled SUSY partners are set to 5 TeV and tanβ is chosen such that the SM-like Higgs boson mass is consistent with the observed value [43]. The area above (below) the blue line represents a dark-matter relic density larger (smaller) than the observed.
Exclusion limits obtained for the $W\!Z$-mediated models in the (a,b) wino/bino (+) scenario, (c) the wino/bino (-) scenario, and (d) the higgsino scenario. The expected 95 CL sensitivity (dashed black line) is shown with ±1σ<sub>exp</sub> (yellow band) from experimental systematic uncertainties and statistical uncertainties on the data yields, the observed limit (red solid line) is shown with ±1σ<sub>theory</sub> (dotted red lines) from signal cross-section uncertainties. The statistical combination of the onshell $W\!Z$, offshell $W\!Z$, and compressed results is shown as the main contour, while the observed (expected) limits for each individual selection are overlaid in green, blue, and orange solid (dashed) lines, respectively. The exclusion is shown projected (a) onto the m(χ̃<sub>1</sub><sup>±</sup>, χ̃<sub>2</sub><sup>0</sup>) vs m(χ̃<sub>1</sub><sup>0</sup>) plane or (b,c,d) onto the m(χ̃<sub>2</sub><sup>0</sup>) vs Δm plane. The light grey area denotes (top) the constraints obtained by the previous equivalent analysis in ATLAS using the 8 TeV 20.3 fb<sup>-1</sup> dataset [17], and (d) the LEP lower χ̃<sub>1</sub><sup>±</sup> mass limit [56]. The pale blue line in the top right panel represents the mass splitting range that yields a dark matter relic density equal to the observed relic density, Ω h<sup>2</sup>=0.1186±0.0020 [172], when the mass parameters of all the decoupled SUSY partners are set to 5 TeV and tanβ is chosen such that the SM-like Higgs boson mass is consistent with the observed value [43]. The area above (below) the blue line represents a dark-matter relic density larger (smaller) than the observed.
Exclusion limits obtained for the $W\!Z$-mediated models in the (a,b) wino/bino (+) scenario, (c) the wino/bino (-) scenario, and (d) the higgsino scenario. The expected 95 CL sensitivity (dashed black line) is shown with ±1σ<sub>exp</sub> (yellow band) from experimental systematic uncertainties and statistical uncertainties on the data yields, the observed limit (red solid line) is shown with ±1σ<sub>theory</sub> (dotted red lines) from signal cross-section uncertainties. The statistical combination of the onshell $W\!Z$, offshell $W\!Z$, and compressed results is shown as the main contour, while the observed (expected) limits for each individual selection are overlaid in green, blue, and orange solid (dashed) lines, respectively. The exclusion is shown projected (a) onto the m(χ̃<sub>1</sub><sup>±</sup>, χ̃<sub>2</sub><sup>0</sup>) vs m(χ̃<sub>1</sub><sup>0</sup>) plane or (b,c,d) onto the m(χ̃<sub>2</sub><sup>0</sup>) vs Δm plane. The light grey area denotes (top) the constraints obtained by the previous equivalent analysis in ATLAS using the 8 TeV 20.3 fb<sup>-1</sup> dataset [17], and (d) the LEP lower χ̃<sub>1</sub><sup>±</sup> mass limit [56]. The pale blue line in the top right panel represents the mass splitting range that yields a dark matter relic density equal to the observed relic density, Ω h<sup>2</sup>=0.1186±0.0020 [172], when the mass parameters of all the decoupled SUSY partners are set to 5 TeV and tanβ is chosen such that the SM-like Higgs boson mass is consistent with the observed value [43]. The area above (below) the blue line represents a dark-matter relic density larger (smaller) than the observed.
Exclusion limits obtained for the $W\!Z$-mediated models in the (a,b) wino/bino (+) scenario, (c) the wino/bino (-) scenario, and (d) the higgsino scenario. The expected 95 CL sensitivity (dashed black line) is shown with ±1σ<sub>exp</sub> (yellow band) from experimental systematic uncertainties and statistical uncertainties on the data yields, the observed limit (red solid line) is shown with ±1σ<sub>theory</sub> (dotted red lines) from signal cross-section uncertainties. The statistical combination of the onshell $W\!Z$, offshell $W\!Z$, and compressed results is shown as the main contour, while the observed (expected) limits for each individual selection are overlaid in green, blue, and orange solid (dashed) lines, respectively. The exclusion is shown projected (a) onto the m(χ̃<sub>1</sub><sup>±</sup>, χ̃<sub>2</sub><sup>0</sup>) vs m(χ̃<sub>1</sub><sup>0</sup>) plane or (b,c,d) onto the m(χ̃<sub>2</sub><sup>0</sup>) vs Δm plane. The light grey area denotes (top) the constraints obtained by the previous equivalent analysis in ATLAS using the 8 TeV 20.3 fb<sup>-1</sup> dataset [17], and (d) the LEP lower χ̃<sub>1</sub><sup>±</sup> mass limit [56]. The pale blue line in the top right panel represents the mass splitting range that yields a dark matter relic density equal to the observed relic density, Ω h<sup>2</sup>=0.1186±0.0020 [172], when the mass parameters of all the decoupled SUSY partners are set to 5 TeV and tanβ is chosen such that the SM-like Higgs boson mass is consistent with the observed value [43]. The area above (below) the blue line represents a dark-matter relic density larger (smaller) than the observed.
Exclusion limits obtained for the $W\!Z$-mediated models in the (a,b) wino/bino (+) scenario, (c) the wino/bino (-) scenario, and (d) the higgsino scenario. The expected 95 CL sensitivity (dashed black line) is shown with ±1σ<sub>exp</sub> (yellow band) from experimental systematic uncertainties and statistical uncertainties on the data yields, the observed limit (red solid line) is shown with ±1σ<sub>theory</sub> (dotted red lines) from signal cross-section uncertainties. The statistical combination of the onshell $W\!Z$, offshell $W\!Z$, and compressed results is shown as the main contour, while the observed (expected) limits for each individual selection are overlaid in green, blue, and orange solid (dashed) lines, respectively. The exclusion is shown projected (a) onto the m(χ̃<sub>1</sub><sup>±</sup>, χ̃<sub>2</sub><sup>0</sup>) vs m(χ̃<sub>1</sub><sup>0</sup>) plane or (b,c,d) onto the m(χ̃<sub>2</sub><sup>0</sup>) vs Δm plane. The light grey area denotes (top) the constraints obtained by the previous equivalent analysis in ATLAS using the 8 TeV 20.3 fb<sup>-1</sup> dataset [17], and (d) the LEP lower χ̃<sub>1</sub><sup>±</sup> mass limit [56]. The pale blue line in the top right panel represents the mass splitting range that yields a dark matter relic density equal to the observed relic density, Ω h<sup>2</sup>=0.1186±0.0020 [172], when the mass parameters of all the decoupled SUSY partners are set to 5 TeV and tanβ is chosen such that the SM-like Higgs boson mass is consistent with the observed value [43]. The area above (below) the blue line represents a dark-matter relic density larger (smaller) than the observed.
Exclusion limits obtained for the $W\!Z$-mediated models in the (a,b) wino/bino (+) scenario, (c) the wino/bino (-) scenario, and (d) the higgsino scenario. The expected 95 CL sensitivity (dashed black line) is shown with ±1σ<sub>exp</sub> (yellow band) from experimental systematic uncertainties and statistical uncertainties on the data yields, the observed limit (red solid line) is shown with ±1σ<sub>theory</sub> (dotted red lines) from signal cross-section uncertainties. The statistical combination of the onshell $W\!Z$, offshell $W\!Z$, and compressed results is shown as the main contour, while the observed (expected) limits for each individual selection are overlaid in green, blue, and orange solid (dashed) lines, respectively. The exclusion is shown projected (a) onto the m(χ̃<sub>1</sub><sup>±</sup>, χ̃<sub>2</sub><sup>0</sup>) vs m(χ̃<sub>1</sub><sup>0</sup>) plane or (b,c,d) onto the m(χ̃<sub>2</sub><sup>0</sup>) vs Δm plane. The light grey area denotes (top) the constraints obtained by the previous equivalent analysis in ATLAS using the 8 TeV 20.3 fb<sup>-1</sup> dataset [17], and (d) the LEP lower χ̃<sub>1</sub><sup>±</sup> mass limit [56]. The pale blue line in the top right panel represents the mass splitting range that yields a dark matter relic density equal to the observed relic density, Ω h<sup>2</sup>=0.1186±0.0020 [172], when the mass parameters of all the decoupled SUSY partners are set to 5 TeV and tanβ is chosen such that the SM-like Higgs boson mass is consistent with the observed value [43]. The area above (below) the blue line represents a dark-matter relic density larger (smaller) than the observed.
Exclusion limits obtained for the $W\!Z$-mediated models in the (a,b) wino/bino (+) scenario, (c) the wino/bino (-) scenario, and (d) the higgsino scenario. The expected 95 CL sensitivity (dashed black line) is shown with ±1σ<sub>exp</sub> (yellow band) from experimental systematic uncertainties and statistical uncertainties on the data yields, the observed limit (red solid line) is shown with ±1σ<sub>theory</sub> (dotted red lines) from signal cross-section uncertainties. The statistical combination of the onshell $W\!Z$, offshell $W\!Z$, and compressed results is shown as the main contour, while the observed (expected) limits for each individual selection are overlaid in green, blue, and orange solid (dashed) lines, respectively. The exclusion is shown projected (a) onto the m(χ̃<sub>1</sub><sup>±</sup>, χ̃<sub>2</sub><sup>0</sup>) vs m(χ̃<sub>1</sub><sup>0</sup>) plane or (b,c,d) onto the m(χ̃<sub>2</sub><sup>0</sup>) vs Δm plane. The light grey area denotes (top) the constraints obtained by the previous equivalent analysis in ATLAS using the 8 TeV 20.3 fb<sup>-1</sup> dataset [17], and (d) the LEP lower χ̃<sub>1</sub><sup>±</sup> mass limit [56]. The pale blue line in the top right panel represents the mass splitting range that yields a dark matter relic density equal to the observed relic density, Ω h<sup>2</sup>=0.1186±0.0020 [172], when the mass parameters of all the decoupled SUSY partners are set to 5 TeV and tanβ is chosen such that the SM-like Higgs boson mass is consistent with the observed value [43]. The area above (below) the blue line represents a dark-matter relic density larger (smaller) than the observed.
Exclusion limits obtained for the $W\!Z$-mediated models in the (a,b) wino/bino (+) scenario, (c) the wino/bino (-) scenario, and (d) the higgsino scenario. The expected 95 CL sensitivity (dashed black line) is shown with ±1σ<sub>exp</sub> (yellow band) from experimental systematic uncertainties and statistical uncertainties on the data yields, the observed limit (red solid line) is shown with ±1σ<sub>theory</sub> (dotted red lines) from signal cross-section uncertainties. The statistical combination of the onshell $W\!Z$, offshell $W\!Z$, and compressed results is shown as the main contour, while the observed (expected) limits for each individual selection are overlaid in green, blue, and orange solid (dashed) lines, respectively. The exclusion is shown projected (a) onto the m(χ̃<sub>1</sub><sup>±</sup>, χ̃<sub>2</sub><sup>0</sup>) vs m(χ̃<sub>1</sub><sup>0</sup>) plane or (b,c,d) onto the m(χ̃<sub>2</sub><sup>0</sup>) vs Δm plane. The light grey area denotes (top) the constraints obtained by the previous equivalent analysis in ATLAS using the 8 TeV 20.3 fb<sup>-1</sup> dataset [17], and (d) the LEP lower χ̃<sub>1</sub><sup>±</sup> mass limit [56]. The pale blue line in the top right panel represents the mass splitting range that yields a dark matter relic density equal to the observed relic density, Ω h<sup>2</sup>=0.1186±0.0020 [172], when the mass parameters of all the decoupled SUSY partners are set to 5 TeV and tanβ is chosen such that the SM-like Higgs boson mass is consistent with the observed value [43]. The area above (below) the blue line represents a dark-matter relic density larger (smaller) than the observed.
Exclusion limits obtained for the $W\!Z$-mediated models in the (a,b) wino/bino (+) scenario, (c) the wino/bino (-) scenario, and (d) the higgsino scenario. The expected 95 CL sensitivity (dashed black line) is shown with ±1σ<sub>exp</sub> (yellow band) from experimental systematic uncertainties and statistical uncertainties on the data yields, the observed limit (red solid line) is shown with ±1σ<sub>theory</sub> (dotted red lines) from signal cross-section uncertainties. The statistical combination of the onshell $W\!Z$, offshell $W\!Z$, and compressed results is shown as the main contour, while the observed (expected) limits for each individual selection are overlaid in green, blue, and orange solid (dashed) lines, respectively. The exclusion is shown projected (a) onto the m(χ̃<sub>1</sub><sup>±</sup>, χ̃<sub>2</sub><sup>0</sup>) vs m(χ̃<sub>1</sub><sup>0</sup>) plane or (b,c,d) onto the m(χ̃<sub>2</sub><sup>0</sup>) vs Δm plane. The light grey area denotes (top) the constraints obtained by the previous equivalent analysis in ATLAS using the 8 TeV 20.3 fb<sup>-1</sup> dataset [17], and (d) the LEP lower χ̃<sub>1</sub><sup>±</sup> mass limit [56]. The pale blue line in the top right panel represents the mass splitting range that yields a dark matter relic density equal to the observed relic density, Ω h<sup>2</sup>=0.1186±0.0020 [172], when the mass parameters of all the decoupled SUSY partners are set to 5 TeV and tanβ is chosen such that the SM-like Higgs boson mass is consistent with the observed value [43]. The area above (below) the blue line represents a dark-matter relic density larger (smaller) than the observed.
Exclusion limits obtained for the $W\!Z$-mediated models in the (a,b) wino/bino (+) scenario, (c) the wino/bino (-) scenario, and (d) the higgsino scenario. The expected 95 CL sensitivity (dashed black line) is shown with ±1σ<sub>exp</sub> (yellow band) from experimental systematic uncertainties and statistical uncertainties on the data yields, the observed limit (red solid line) is shown with ±1σ<sub>theory</sub> (dotted red lines) from signal cross-section uncertainties. The statistical combination of the onshell $W\!Z$, offshell $W\!Z$, and compressed results is shown as the main contour, while the observed (expected) limits for each individual selection are overlaid in green, blue, and orange solid (dashed) lines, respectively. The exclusion is shown projected (a) onto the m(χ̃<sub>1</sub><sup>±</sup>, χ̃<sub>2</sub><sup>0</sup>) vs m(χ̃<sub>1</sub><sup>0</sup>) plane or (b,c,d) onto the m(χ̃<sub>2</sub><sup>0</sup>) vs Δm plane. The light grey area denotes (top) the constraints obtained by the previous equivalent analysis in ATLAS using the 8 TeV 20.3 fb<sup>-1</sup> dataset [17], and (d) the LEP lower χ̃<sub>1</sub><sup>±</sup> mass limit [56]. The pale blue line in the top right panel represents the mass splitting range that yields a dark matter relic density equal to the observed relic density, Ω h<sup>2</sup>=0.1186±0.0020 [172], when the mass parameters of all the decoupled SUSY partners are set to 5 TeV and tanβ is chosen such that the SM-like Higgs boson mass is consistent with the observed value [43]. The area above (below) the blue line represents a dark-matter relic density larger (smaller) than the observed.
Exclusion limits obtained for the $W\!Z$-mediated models in the (a,b) wino/bino (+) scenario, (c) the wino/bino (-) scenario, and (d) the higgsino scenario. The expected 95 CL sensitivity (dashed black line) is shown with ±1σ<sub>exp</sub> (yellow band) from experimental systematic uncertainties and statistical uncertainties on the data yields, the observed limit (red solid line) is shown with ±1σ<sub>theory</sub> (dotted red lines) from signal cross-section uncertainties. The statistical combination of the onshell $W\!Z$, offshell $W\!Z$, and compressed results is shown as the main contour, while the observed (expected) limits for each individual selection are overlaid in green, blue, and orange solid (dashed) lines, respectively. The exclusion is shown projected (a) onto the m(χ̃<sub>1</sub><sup>±</sup>, χ̃<sub>2</sub><sup>0</sup>) vs m(χ̃<sub>1</sub><sup>0</sup>) plane or (b,c,d) onto the m(χ̃<sub>2</sub><sup>0</sup>) vs Δm plane. The light grey area denotes (top) the constraints obtained by the previous equivalent analysis in ATLAS using the 8 TeV 20.3 fb<sup>-1</sup> dataset [17], and (d) the LEP lower χ̃<sub>1</sub><sup>±</sup> mass limit [56]. The pale blue line in the top right panel represents the mass splitting range that yields a dark matter relic density equal to the observed relic density, Ω h<sup>2</sup>=0.1186±0.0020 [172], when the mass parameters of all the decoupled SUSY partners are set to 5 TeV and tanβ is chosen such that the SM-like Higgs boson mass is consistent with the observed value [43]. The area above (below) the blue line represents a dark-matter relic density larger (smaller) than the observed.
Exclusion limits obtained for the $W\!Z$-mediated models in the (a,b) wino/bino (+) scenario, (c) the wino/bino (-) scenario, and (d) the higgsino scenario. The expected 95 CL sensitivity (dashed black line) is shown with ±1σ<sub>exp</sub> (yellow band) from experimental systematic uncertainties and statistical uncertainties on the data yields, the observed limit (red solid line) is shown with ±1σ<sub>theory</sub> (dotted red lines) from signal cross-section uncertainties. The statistical combination of the onshell $W\!Z$, offshell $W\!Z$, and compressed results is shown as the main contour, while the observed (expected) limits for each individual selection are overlaid in green, blue, and orange solid (dashed) lines, respectively. The exclusion is shown projected (a) onto the m(χ̃<sub>1</sub><sup>±</sup>, χ̃<sub>2</sub><sup>0</sup>) vs m(χ̃<sub>1</sub><sup>0</sup>) plane or (b,c,d) onto the m(χ̃<sub>2</sub><sup>0</sup>) vs Δm plane. The light grey area denotes (top) the constraints obtained by the previous equivalent analysis in ATLAS using the 8 TeV 20.3 fb<sup>-1</sup> dataset [17], and (d) the LEP lower χ̃<sub>1</sub><sup>±</sup> mass limit [56]. The pale blue line in the top right panel represents the mass splitting range that yields a dark matter relic density equal to the observed relic density, Ω h<sup>2</sup>=0.1186±0.0020 [172], when the mass parameters of all the decoupled SUSY partners are set to 5 TeV and tanβ is chosen such that the SM-like Higgs boson mass is consistent with the observed value [43]. The area above (below) the blue line represents a dark-matter relic density larger (smaller) than the observed.
Exclusion limits obtained for the $W\!Z$-mediated models in the (a,b) wino/bino (+) scenario, (c) the wino/bino (-) scenario, and (d) the higgsino scenario. The expected 95 CL sensitivity (dashed black line) is shown with ±1σ<sub>exp</sub> (yellow band) from experimental systematic uncertainties and statistical uncertainties on the data yields, the observed limit (red solid line) is shown with ±1σ<sub>theory</sub> (dotted red lines) from signal cross-section uncertainties. The statistical combination of the onshell $W\!Z$, offshell $W\!Z$, and compressed results is shown as the main contour, while the observed (expected) limits for each individual selection are overlaid in green, blue, and orange solid (dashed) lines, respectively. The exclusion is shown projected (a) onto the m(χ̃<sub>1</sub><sup>±</sup>, χ̃<sub>2</sub><sup>0</sup>) vs m(χ̃<sub>1</sub><sup>0</sup>) plane or (b,c,d) onto the m(χ̃<sub>2</sub><sup>0</sup>) vs Δm plane. The light grey area denotes (top) the constraints obtained by the previous equivalent analysis in ATLAS using the 8 TeV 20.3 fb<sup>-1</sup> dataset [17], and (d) the LEP lower χ̃<sub>1</sub><sup>±</sup> mass limit [56]. The pale blue line in the top right panel represents the mass splitting range that yields a dark matter relic density equal to the observed relic density, Ω h<sup>2</sup>=0.1186±0.0020 [172], when the mass parameters of all the decoupled SUSY partners are set to 5 TeV and tanβ is chosen such that the SM-like Higgs boson mass is consistent with the observed value [43]. The area above (below) the blue line represents a dark-matter relic density larger (smaller) than the observed.
Exclusion limits obtained for the $W\!Z$-mediated models in the (a,b) wino/bino (+) scenario, (c) the wino/bino (-) scenario, and (d) the higgsino scenario. The expected 95 CL sensitivity (dashed black line) is shown with ±1σ<sub>exp</sub> (yellow band) from experimental systematic uncertainties and statistical uncertainties on the data yields, the observed limit (red solid line) is shown with ±1σ<sub>theory</sub> (dotted red lines) from signal cross-section uncertainties. The statistical combination of the onshell $W\!Z$, offshell $W\!Z$, and compressed results is shown as the main contour, while the observed (expected) limits for each individual selection are overlaid in green, blue, and orange solid (dashed) lines, respectively. The exclusion is shown projected (a) onto the m(χ̃<sub>1</sub><sup>±</sup>, χ̃<sub>2</sub><sup>0</sup>) vs m(χ̃<sub>1</sub><sup>0</sup>) plane or (b,c,d) onto the m(χ̃<sub>2</sub><sup>0</sup>) vs Δm plane. The light grey area denotes (top) the constraints obtained by the previous equivalent analysis in ATLAS using the 8 TeV 20.3 fb<sup>-1</sup> dataset [17], and (d) the LEP lower χ̃<sub>1</sub><sup>±</sup> mass limit [56]. The pale blue line in the top right panel represents the mass splitting range that yields a dark matter relic density equal to the observed relic density, Ω h<sup>2</sup>=0.1186±0.0020 [172], when the mass parameters of all the decoupled SUSY partners are set to 5 TeV and tanβ is chosen such that the SM-like Higgs boson mass is consistent with the observed value [43]. The area above (below) the blue line represents a dark-matter relic density larger (smaller) than the observed.
Exclusion limits obtained for the $W\!Z$-mediated models in the (a,b) wino/bino (+) scenario, (c) the wino/bino (-) scenario, and (d) the higgsino scenario. The expected 95 CL sensitivity (dashed black line) is shown with ±1σ<sub>exp</sub> (yellow band) from experimental systematic uncertainties and statistical uncertainties on the data yields, the observed limit (red solid line) is shown with ±1σ<sub>theory</sub> (dotted red lines) from signal cross-section uncertainties. The statistical combination of the onshell $W\!Z$, offshell $W\!Z$, and compressed results is shown as the main contour, while the observed (expected) limits for each individual selection are overlaid in green, blue, and orange solid (dashed) lines, respectively. The exclusion is shown projected (a) onto the m(χ̃<sub>1</sub><sup>±</sup>, χ̃<sub>2</sub><sup>0</sup>) vs m(χ̃<sub>1</sub><sup>0</sup>) plane or (b,c,d) onto the m(χ̃<sub>2</sub><sup>0</sup>) vs Δm plane. The light grey area denotes (top) the constraints obtained by the previous equivalent analysis in ATLAS using the 8 TeV 20.3 fb<sup>-1</sup> dataset [17], and (d) the LEP lower χ̃<sub>1</sub><sup>±</sup> mass limit [56]. The pale blue line in the top right panel represents the mass splitting range that yields a dark matter relic density equal to the observed relic density, Ω h<sup>2</sup>=0.1186±0.0020 [172], when the mass parameters of all the decoupled SUSY partners are set to 5 TeV and tanβ is chosen such that the SM-like Higgs boson mass is consistent with the observed value [43]. The area above (below) the blue line represents a dark-matter relic density larger (smaller) than the observed.
Exclusion limits obtained for the $W\!Z$-mediated models in the (a,b) wino/bino (+) scenario, (c) the wino/bino (-) scenario, and (d) the higgsino scenario. The expected 95 CL sensitivity (dashed black line) is shown with ±1σ<sub>exp</sub> (yellow band) from experimental systematic uncertainties and statistical uncertainties on the data yields, the observed limit (red solid line) is shown with ±1σ<sub>theory</sub> (dotted red lines) from signal cross-section uncertainties. The statistical combination of the onshell $W\!Z$, offshell $W\!Z$, and compressed results is shown as the main contour, while the observed (expected) limits for each individual selection are overlaid in green, blue, and orange solid (dashed) lines, respectively. The exclusion is shown projected (a) onto the m(χ̃<sub>1</sub><sup>±</sup>, χ̃<sub>2</sub><sup>0</sup>) vs m(χ̃<sub>1</sub><sup>0</sup>) plane or (b,c,d) onto the m(χ̃<sub>2</sub><sup>0</sup>) vs Δm plane. The light grey area denotes (top) the constraints obtained by the previous equivalent analysis in ATLAS using the 8 TeV 20.3 fb<sup>-1</sup> dataset [17], and (d) the LEP lower χ̃<sub>1</sub><sup>±</sup> mass limit [56]. The pale blue line in the top right panel represents the mass splitting range that yields a dark matter relic density equal to the observed relic density, Ω h<sup>2</sup>=0.1186±0.0020 [172], when the mass parameters of all the decoupled SUSY partners are set to 5 TeV and tanβ is chosen such that the SM-like Higgs boson mass is consistent with the observed value [43]. The area above (below) the blue line represents a dark-matter relic density larger (smaller) than the observed.
Exclusion limits obtained for the $W\!Z$-mediated models in the (a,b) wino/bino (+) scenario, (c) the wino/bino (-) scenario, and (d) the higgsino scenario. The expected 95 CL sensitivity (dashed black line) is shown with ±1σ<sub>exp</sub> (yellow band) from experimental systematic uncertainties and statistical uncertainties on the data yields, the observed limit (red solid line) is shown with ±1σ<sub>theory</sub> (dotted red lines) from signal cross-section uncertainties. The statistical combination of the onshell $W\!Z$, offshell $W\!Z$, and compressed results is shown as the main contour, while the observed (expected) limits for each individual selection are overlaid in green, blue, and orange solid (dashed) lines, respectively. The exclusion is shown projected (a) onto the m(χ̃<sub>1</sub><sup>±</sup>, χ̃<sub>2</sub><sup>0</sup>) vs m(χ̃<sub>1</sub><sup>0</sup>) plane or (b,c,d) onto the m(χ̃<sub>2</sub><sup>0</sup>) vs Δm plane. The light grey area denotes (top) the constraints obtained by the previous equivalent analysis in ATLAS using the 8 TeV 20.3 fb<sup>-1</sup> dataset [17], and (d) the LEP lower χ̃<sub>1</sub><sup>±</sup> mass limit [56]. The pale blue line in the top right panel represents the mass splitting range that yields a dark matter relic density equal to the observed relic density, Ω h<sup>2</sup>=0.1186±0.0020 [172], when the mass parameters of all the decoupled SUSY partners are set to 5 TeV and tanβ is chosen such that the SM-like Higgs boson mass is consistent with the observed value [43]. The area above (below) the blue line represents a dark-matter relic density larger (smaller) than the observed.
Exclusion limits obtained for the $W\!Z$-mediated models in the (a,b) wino/bino (+) scenario, (c) the wino/bino (-) scenario, and (d) the higgsino scenario. The expected 95 CL sensitivity (dashed black line) is shown with ±1σ<sub>exp</sub> (yellow band) from experimental systematic uncertainties and statistical uncertainties on the data yields, the observed limit (red solid line) is shown with ±1σ<sub>theory</sub> (dotted red lines) from signal cross-section uncertainties. The statistical combination of the onshell $W\!Z$, offshell $W\!Z$, and compressed results is shown as the main contour, while the observed (expected) limits for each individual selection are overlaid in green, blue, and orange solid (dashed) lines, respectively. The exclusion is shown projected (a) onto the m(χ̃<sub>1</sub><sup>±</sup>, χ̃<sub>2</sub><sup>0</sup>) vs m(χ̃<sub>1</sub><sup>0</sup>) plane or (b,c,d) onto the m(χ̃<sub>2</sub><sup>0</sup>) vs Δm plane. The light grey area denotes (top) the constraints obtained by the previous equivalent analysis in ATLAS using the 8 TeV 20.3 fb<sup>-1</sup> dataset [17], and (d) the LEP lower χ̃<sub>1</sub><sup>±</sup> mass limit [56]. The pale blue line in the top right panel represents the mass splitting range that yields a dark matter relic density equal to the observed relic density, Ω h<sup>2</sup>=0.1186±0.0020 [172], when the mass parameters of all the decoupled SUSY partners are set to 5 TeV and tanβ is chosen such that the SM-like Higgs boson mass is consistent with the observed value [43]. The area above (below) the blue line represents a dark-matter relic density larger (smaller) than the observed.
Exclusion limits obtained for the $W\!Z$-mediated models in the (a,b) wino/bino (+) scenario, (c) the wino/bino (-) scenario, and (d) the higgsino scenario. The expected 95 CL sensitivity (dashed black line) is shown with ±1σ<sub>exp</sub> (yellow band) from experimental systematic uncertainties and statistical uncertainties on the data yields, the observed limit (red solid line) is shown with ±1σ<sub>theory</sub> (dotted red lines) from signal cross-section uncertainties. The statistical combination of the onshell $W\!Z$, offshell $W\!Z$, and compressed results is shown as the main contour, while the observed (expected) limits for each individual selection are overlaid in green, blue, and orange solid (dashed) lines, respectively. The exclusion is shown projected (a) onto the m(χ̃<sub>1</sub><sup>±</sup>, χ̃<sub>2</sub><sup>0</sup>) vs m(χ̃<sub>1</sub><sup>0</sup>) plane or (b,c,d) onto the m(χ̃<sub>2</sub><sup>0</sup>) vs Δm plane. The light grey area denotes (top) the constraints obtained by the previous equivalent analysis in ATLAS using the 8 TeV 20.3 fb<sup>-1</sup> dataset [17], and (d) the LEP lower χ̃<sub>1</sub><sup>±</sup> mass limit [56]. The pale blue line in the top right panel represents the mass splitting range that yields a dark matter relic density equal to the observed relic density, Ω h<sup>2</sup>=0.1186±0.0020 [172], when the mass parameters of all the decoupled SUSY partners are set to 5 TeV and tanβ is chosen such that the SM-like Higgs boson mass is consistent with the observed value [43]. The area above (below) the blue line represents a dark-matter relic density larger (smaller) than the observed.
Exclusion limits obtained for the $W\!Z$-mediated models in the (a,b) wino/bino (+) scenario, (c) the wino/bino (-) scenario, and (d) the higgsino scenario. The expected 95 CL sensitivity (dashed black line) is shown with ±1σ<sub>exp</sub> (yellow band) from experimental systematic uncertainties and statistical uncertainties on the data yields, the observed limit (red solid line) is shown with ±1σ<sub>theory</sub> (dotted red lines) from signal cross-section uncertainties. The statistical combination of the onshell $W\!Z$, offshell $W\!Z$, and compressed results is shown as the main contour, while the observed (expected) limits for each individual selection are overlaid in green, blue, and orange solid (dashed) lines, respectively. The exclusion is shown projected (a) onto the m(χ̃<sub>1</sub><sup>±</sup>, χ̃<sub>2</sub><sup>0</sup>) vs m(χ̃<sub>1</sub><sup>0</sup>) plane or (b,c,d) onto the m(χ̃<sub>2</sub><sup>0</sup>) vs Δm plane. The light grey area denotes (top) the constraints obtained by the previous equivalent analysis in ATLAS using the 8 TeV 20.3 fb<sup>-1</sup> dataset [17], and (d) the LEP lower χ̃<sub>1</sub><sup>±</sup> mass limit [56]. The pale blue line in the top right panel represents the mass splitting range that yields a dark matter relic density equal to the observed relic density, Ω h<sup>2</sup>=0.1186±0.0020 [172], when the mass parameters of all the decoupled SUSY partners are set to 5 TeV and tanβ is chosen such that the SM-like Higgs boson mass is consistent with the observed value [43]. The area above (below) the blue line represents a dark-matter relic density larger (smaller) than the observed.
Exclusion limits obtained for the $W\!Z$-mediated models in the (a,b) wino/bino (+) scenario, (c) the wino/bino (-) scenario, and (d) the higgsino scenario. The expected 95 CL sensitivity (dashed black line) is shown with ±1σ<sub>exp</sub> (yellow band) from experimental systematic uncertainties and statistical uncertainties on the data yields, the observed limit (red solid line) is shown with ±1σ<sub>theory</sub> (dotted red lines) from signal cross-section uncertainties. The statistical combination of the onshell $W\!Z$, offshell $W\!Z$, and compressed results is shown as the main contour, while the observed (expected) limits for each individual selection are overlaid in green, blue, and orange solid (dashed) lines, respectively. The exclusion is shown projected (a) onto the m(χ̃<sub>1</sub><sup>±</sup>, χ̃<sub>2</sub><sup>0</sup>) vs m(χ̃<sub>1</sub><sup>0</sup>) plane or (b,c,d) onto the m(χ̃<sub>2</sub><sup>0</sup>) vs Δm plane. The light grey area denotes (top) the constraints obtained by the previous equivalent analysis in ATLAS using the 8 TeV 20.3 fb<sup>-1</sup> dataset [17], and (d) the LEP lower χ̃<sub>1</sub><sup>±</sup> mass limit [56]. The pale blue line in the top right panel represents the mass splitting range that yields a dark matter relic density equal to the observed relic density, Ω h<sup>2</sup>=0.1186±0.0020 [172], when the mass parameters of all the decoupled SUSY partners are set to 5 TeV and tanβ is chosen such that the SM-like Higgs boson mass is consistent with the observed value [43]. The area above (below) the blue line represents a dark-matter relic density larger (smaller) than the observed.
Exclusion limits obtained for the $W\!Z$-mediated models in the (a,b) wino/bino (+) scenario, (c) the wino/bino (-) scenario, and (d) the higgsino scenario. The expected 95 CL sensitivity (dashed black line) is shown with ±1σ<sub>exp</sub> (yellow band) from experimental systematic uncertainties and statistical uncertainties on the data yields, the observed limit (red solid line) is shown with ±1σ<sub>theory</sub> (dotted red lines) from signal cross-section uncertainties. The statistical combination of the onshell $W\!Z$, offshell $W\!Z$, and compressed results is shown as the main contour, while the observed (expected) limits for each individual selection are overlaid in green, blue, and orange solid (dashed) lines, respectively. The exclusion is shown projected (a) onto the m(χ̃<sub>1</sub><sup>±</sup>, χ̃<sub>2</sub><sup>0</sup>) vs m(χ̃<sub>1</sub><sup>0</sup>) plane or (b,c,d) onto the m(χ̃<sub>2</sub><sup>0</sup>) vs Δm plane. The light grey area denotes (top) the constraints obtained by the previous equivalent analysis in ATLAS using the 8 TeV 20.3 fb<sup>-1</sup> dataset [17], and (d) the LEP lower χ̃<sub>1</sub><sup>±</sup> mass limit [56]. The pale blue line in the top right panel represents the mass splitting range that yields a dark matter relic density equal to the observed relic density, Ω h<sup>2</sup>=0.1186±0.0020 [172], when the mass parameters of all the decoupled SUSY partners are set to 5 TeV and tanβ is chosen such that the SM-like Higgs boson mass is consistent with the observed value [43]. The area above (below) the blue line represents a dark-matter relic density larger (smaller) than the observed.
Exclusion limits obtained for the $W\!Z$-mediated models in the (a,b) wino/bino (+) scenario, (c) the wino/bino (-) scenario, and (d) the higgsino scenario. The expected 95 CL sensitivity (dashed black line) is shown with ±1σ<sub>exp</sub> (yellow band) from experimental systematic uncertainties and statistical uncertainties on the data yields, the observed limit (red solid line) is shown with ±1σ<sub>theory</sub> (dotted red lines) from signal cross-section uncertainties. The statistical combination of the onshell $W\!Z$, offshell $W\!Z$, and compressed results is shown as the main contour, while the observed (expected) limits for each individual selection are overlaid in green, blue, and orange solid (dashed) lines, respectively. The exclusion is shown projected (a) onto the m(χ̃<sub>1</sub><sup>±</sup>, χ̃<sub>2</sub><sup>0</sup>) vs m(χ̃<sub>1</sub><sup>0</sup>) plane or (b,c,d) onto the m(χ̃<sub>2</sub><sup>0</sup>) vs Δm plane. The light grey area denotes (top) the constraints obtained by the previous equivalent analysis in ATLAS using the 8 TeV 20.3 fb<sup>-1</sup> dataset [17], and (d) the LEP lower χ̃<sub>1</sub><sup>±</sup> mass limit [56]. The pale blue line in the top right panel represents the mass splitting range that yields a dark matter relic density equal to the observed relic density, Ω h<sup>2</sup>=0.1186±0.0020 [172], when the mass parameters of all the decoupled SUSY partners are set to 5 TeV and tanβ is chosen such that the SM-like Higgs boson mass is consistent with the observed value [43]. The area above (below) the blue line represents a dark-matter relic density larger (smaller) than the observed.
Exclusion limits obtained for the $W\!Z$-mediated models in the (a,b) wino/bino (+) scenario, (c) the wino/bino (-) scenario, and (d) the higgsino scenario. The expected 95 CL sensitivity (dashed black line) is shown with ±1σ<sub>exp</sub> (yellow band) from experimental systematic uncertainties and statistical uncertainties on the data yields, the observed limit (red solid line) is shown with ±1σ<sub>theory</sub> (dotted red lines) from signal cross-section uncertainties. The statistical combination of the onshell $W\!Z$, offshell $W\!Z$, and compressed results is shown as the main contour, while the observed (expected) limits for each individual selection are overlaid in green, blue, and orange solid (dashed) lines, respectively. The exclusion is shown projected (a) onto the m(χ̃<sub>1</sub><sup>±</sup>, χ̃<sub>2</sub><sup>0</sup>) vs m(χ̃<sub>1</sub><sup>0</sup>) plane or (b,c,d) onto the m(χ̃<sub>2</sub><sup>0</sup>) vs Δm plane. The light grey area denotes (top) the constraints obtained by the previous equivalent analysis in ATLAS using the 8 TeV 20.3 fb<sup>-1</sup> dataset [17], and (d) the LEP lower χ̃<sub>1</sub><sup>±</sup> mass limit [56]. The pale blue line in the top right panel represents the mass splitting range that yields a dark matter relic density equal to the observed relic density, Ω h<sup>2</sup>=0.1186±0.0020 [172], when the mass parameters of all the decoupled SUSY partners are set to 5 TeV and tanβ is chosen such that the SM-like Higgs boson mass is consistent with the observed value [43]. The area above (below) the blue line represents a dark-matter relic density larger (smaller) than the observed.
Exclusion limits obtained for the $W\!Z$-mediated models in the (a,b) wino/bino (+) scenario, (c) the wino/bino (-) scenario, and (d) the higgsino scenario. The expected 95 CL sensitivity (dashed black line) is shown with ±1σ<sub>exp</sub> (yellow band) from experimental systematic uncertainties and statistical uncertainties on the data yields, the observed limit (red solid line) is shown with ±1σ<sub>theory</sub> (dotted red lines) from signal cross-section uncertainties. The statistical combination of the onshell $W\!Z$, offshell $W\!Z$, and compressed results is shown as the main contour, while the observed (expected) limits for each individual selection are overlaid in green, blue, and orange solid (dashed) lines, respectively. The exclusion is shown projected (a) onto the m(χ̃<sub>1</sub><sup>±</sup>, χ̃<sub>2</sub><sup>0</sup>) vs m(χ̃<sub>1</sub><sup>0</sup>) plane or (b,c,d) onto the m(χ̃<sub>2</sub><sup>0</sup>) vs Δm plane. The light grey area denotes (top) the constraints obtained by the previous equivalent analysis in ATLAS using the 8 TeV 20.3 fb<sup>-1</sup> dataset [17], and (d) the LEP lower χ̃<sub>1</sub><sup>±</sup> mass limit [56]. The pale blue line in the top right panel represents the mass splitting range that yields a dark matter relic density equal to the observed relic density, Ω h<sup>2</sup>=0.1186±0.0020 [172], when the mass parameters of all the decoupled SUSY partners are set to 5 TeV and tanβ is chosen such that the SM-like Higgs boson mass is consistent with the observed value [43]. The area above (below) the blue line represents a dark-matter relic density larger (smaller) than the observed.
Exclusion limits obtained for the $W\!Z$-mediated models in the (a,b) wino/bino (+) scenario, (c) the wino/bino (-) scenario, and (d) the higgsino scenario. The expected 95 CL sensitivity (dashed black line) is shown with ±1σ<sub>exp</sub> (yellow band) from experimental systematic uncertainties and statistical uncertainties on the data yields, the observed limit (red solid line) is shown with ±1σ<sub>theory</sub> (dotted red lines) from signal cross-section uncertainties. The statistical combination of the onshell $W\!Z$, offshell $W\!Z$, and compressed results is shown as the main contour, while the observed (expected) limits for each individual selection are overlaid in green, blue, and orange solid (dashed) lines, respectively. The exclusion is shown projected (a) onto the m(χ̃<sub>1</sub><sup>±</sup>, χ̃<sub>2</sub><sup>0</sup>) vs m(χ̃<sub>1</sub><sup>0</sup>) plane or (b,c,d) onto the m(χ̃<sub>2</sub><sup>0</sup>) vs Δm plane. The light grey area denotes (top) the constraints obtained by the previous equivalent analysis in ATLAS using the 8 TeV 20.3 fb<sup>-1</sup> dataset [17], and (d) the LEP lower χ̃<sub>1</sub><sup>±</sup> mass limit [56]. The pale blue line in the top right panel represents the mass splitting range that yields a dark matter relic density equal to the observed relic density, Ω h<sup>2</sup>=0.1186±0.0020 [172], when the mass parameters of all the decoupled SUSY partners are set to 5 TeV and tanβ is chosen such that the SM-like Higgs boson mass is consistent with the observed value [43]. The area above (below) the blue line represents a dark-matter relic density larger (smaller) than the observed.
Exclusion limits obtained for the $W\!Z$-mediated models in the (a,b) wino/bino (+) scenario, (c) the wino/bino (-) scenario, and (d) the higgsino scenario. The expected 95 CL sensitivity (dashed black line) is shown with ±1σ<sub>exp</sub> (yellow band) from experimental systematic uncertainties and statistical uncertainties on the data yields, the observed limit (red solid line) is shown with ±1σ<sub>theory</sub> (dotted red lines) from signal cross-section uncertainties. The statistical combination of the onshell $W\!Z$, offshell $W\!Z$, and compressed results is shown as the main contour, while the observed (expected) limits for each individual selection are overlaid in green, blue, and orange solid (dashed) lines, respectively. The exclusion is shown projected (a) onto the m(χ̃<sub>1</sub><sup>±</sup>, χ̃<sub>2</sub><sup>0</sup>) vs m(χ̃<sub>1</sub><sup>0</sup>) plane or (b,c,d) onto the m(χ̃<sub>2</sub><sup>0</sup>) vs Δm plane. The light grey area denotes (top) the constraints obtained by the previous equivalent analysis in ATLAS using the 8 TeV 20.3 fb<sup>-1</sup> dataset [17], and (d) the LEP lower χ̃<sub>1</sub><sup>±</sup> mass limit [56]. The pale blue line in the top right panel represents the mass splitting range that yields a dark matter relic density equal to the observed relic density, Ω h<sup>2</sup>=0.1186±0.0020 [172], when the mass parameters of all the decoupled SUSY partners are set to 5 TeV and tanβ is chosen such that the SM-like Higgs boson mass is consistent with the observed value [43]. The area above (below) the blue line represents a dark-matter relic density larger (smaller) than the observed.
Exclusion limits obtained for the $W\!Z$-mediated models in the (a,b) wino/bino (+) scenario, (c) the wino/bino (-) scenario, and (d) the higgsino scenario. The expected 95 CL sensitivity (dashed black line) is shown with ±1σ<sub>exp</sub> (yellow band) from experimental systematic uncertainties and statistical uncertainties on the data yields, the observed limit (red solid line) is shown with ±1σ<sub>theory</sub> (dotted red lines) from signal cross-section uncertainties. The statistical combination of the onshell $W\!Z$, offshell $W\!Z$, and compressed results is shown as the main contour, while the observed (expected) limits for each individual selection are overlaid in green, blue, and orange solid (dashed) lines, respectively. The exclusion is shown projected (a) onto the m(χ̃<sub>1</sub><sup>±</sup>, χ̃<sub>2</sub><sup>0</sup>) vs m(χ̃<sub>1</sub><sup>0</sup>) plane or (b,c,d) onto the m(χ̃<sub>2</sub><sup>0</sup>) vs Δm plane. The light grey area denotes (top) the constraints obtained by the previous equivalent analysis in ATLAS using the 8 TeV 20.3 fb<sup>-1</sup> dataset [17], and (d) the LEP lower χ̃<sub>1</sub><sup>±</sup> mass limit [56]. The pale blue line in the top right panel represents the mass splitting range that yields a dark matter relic density equal to the observed relic density, Ω h<sup>2</sup>=0.1186±0.0020 [172], when the mass parameters of all the decoupled SUSY partners are set to 5 TeV and tanβ is chosen such that the SM-like Higgs boson mass is consistent with the observed value [43]. The area above (below) the blue line represents a dark-matter relic density larger (smaller) than the observed.
Exclusion limits obtained for the $W\!Z$-mediated models in the (a,b) wino/bino (+) scenario, (c) the wino/bino (-) scenario, and (d) the higgsino scenario. The expected 95 CL sensitivity (dashed black line) is shown with ±1σ<sub>exp</sub> (yellow band) from experimental systematic uncertainties and statistical uncertainties on the data yields, the observed limit (red solid line) is shown with ±1σ<sub>theory</sub> (dotted red lines) from signal cross-section uncertainties. The statistical combination of the onshell $W\!Z$, offshell $W\!Z$, and compressed results is shown as the main contour, while the observed (expected) limits for each individual selection are overlaid in green, blue, and orange solid (dashed) lines, respectively. The exclusion is shown projected (a) onto the m(χ̃<sub>1</sub><sup>±</sup>, χ̃<sub>2</sub><sup>0</sup>) vs m(χ̃<sub>1</sub><sup>0</sup>) plane or (b,c,d) onto the m(χ̃<sub>2</sub><sup>0</sup>) vs Δm plane. The light grey area denotes (top) the constraints obtained by the previous equivalent analysis in ATLAS using the 8 TeV 20.3 fb<sup>-1</sup> dataset [17], and (d) the LEP lower χ̃<sub>1</sub><sup>±</sup> mass limit [56]. The pale blue line in the top right panel represents the mass splitting range that yields a dark matter relic density equal to the observed relic density, Ω h<sup>2</sup>=0.1186±0.0020 [172], when the mass parameters of all the decoupled SUSY partners are set to 5 TeV and tanβ is chosen such that the SM-like Higgs boson mass is consistent with the observed value [43]. The area above (below) the blue line represents a dark-matter relic density larger (smaller) than the observed.
Exclusion limits obtained for the $W\!Z$-mediated models in the (a,b) wino/bino (+) scenario, (c) the wino/bino (-) scenario, and (d) the higgsino scenario. The expected 95 CL sensitivity (dashed black line) is shown with ±1σ<sub>exp</sub> (yellow band) from experimental systematic uncertainties and statistical uncertainties on the data yields, the observed limit (red solid line) is shown with ±1σ<sub>theory</sub> (dotted red lines) from signal cross-section uncertainties. The statistical combination of the onshell $W\!Z$, offshell $W\!Z$, and compressed results is shown as the main contour, while the observed (expected) limits for each individual selection are overlaid in green, blue, and orange solid (dashed) lines, respectively. The exclusion is shown projected (a) onto the m(χ̃<sub>1</sub><sup>±</sup>, χ̃<sub>2</sub><sup>0</sup>) vs m(χ̃<sub>1</sub><sup>0</sup>) plane or (b,c,d) onto the m(χ̃<sub>2</sub><sup>0</sup>) vs Δm plane. The light grey area denotes (top) the constraints obtained by the previous equivalent analysis in ATLAS using the 8 TeV 20.3 fb<sup>-1</sup> dataset [17], and (d) the LEP lower χ̃<sub>1</sub><sup>±</sup> mass limit [56]. The pale blue line in the top right panel represents the mass splitting range that yields a dark matter relic density equal to the observed relic density, Ω h<sup>2</sup>=0.1186±0.0020 [172], when the mass parameters of all the decoupled SUSY partners are set to 5 TeV and tanβ is chosen such that the SM-like Higgs boson mass is consistent with the observed value [43]. The area above (below) the blue line represents a dark-matter relic density larger (smaller) than the observed.
Exclusion limits obtained for the $W\!Z$-mediated models in the (a,b) wino/bino (+) scenario, (c) the wino/bino (-) scenario, and (d) the higgsino scenario. The expected 95 CL sensitivity (dashed black line) is shown with ±1σ<sub>exp</sub> (yellow band) from experimental systematic uncertainties and statistical uncertainties on the data yields, the observed limit (red solid line) is shown with ±1σ<sub>theory</sub> (dotted red lines) from signal cross-section uncertainties. The statistical combination of the onshell $W\!Z$, offshell $W\!Z$, and compressed results is shown as the main contour, while the observed (expected) limits for each individual selection are overlaid in green, blue, and orange solid (dashed) lines, respectively. The exclusion is shown projected (a) onto the m(χ̃<sub>1</sub><sup>±</sup>, χ̃<sub>2</sub><sup>0</sup>) vs m(χ̃<sub>1</sub><sup>0</sup>) plane or (b,c,d) onto the m(χ̃<sub>2</sub><sup>0</sup>) vs Δm plane. The light grey area denotes (top) the constraints obtained by the previous equivalent analysis in ATLAS using the 8 TeV 20.3 fb<sup>-1</sup> dataset [17], and (d) the LEP lower χ̃<sub>1</sub><sup>±</sup> mass limit [56]. The pale blue line in the top right panel represents the mass splitting range that yields a dark matter relic density equal to the observed relic density, Ω h<sup>2</sup>=0.1186±0.0020 [172], when the mass parameters of all the decoupled SUSY partners are set to 5 TeV and tanβ is chosen such that the SM-like Higgs boson mass is consistent with the observed value [43]. The area above (below) the blue line represents a dark-matter relic density larger (smaller) than the observed.
Exclusion limits obtained for the $W\!Z$-mediated models in the (a,b) wino/bino (+) scenario, (c) the wino/bino (-) scenario, and (d) the higgsino scenario. The expected 95 CL sensitivity (dashed black line) is shown with ±1σ<sub>exp</sub> (yellow band) from experimental systematic uncertainties and statistical uncertainties on the data yields, the observed limit (red solid line) is shown with ±1σ<sub>theory</sub> (dotted red lines) from signal cross-section uncertainties. The statistical combination of the onshell $W\!Z$, offshell $W\!Z$, and compressed results is shown as the main contour, while the observed (expected) limits for each individual selection are overlaid in green, blue, and orange solid (dashed) lines, respectively. The exclusion is shown projected (a) onto the m(χ̃<sub>1</sub><sup>±</sup>, χ̃<sub>2</sub><sup>0</sup>) vs m(χ̃<sub>1</sub><sup>0</sup>) plane or (b,c,d) onto the m(χ̃<sub>2</sub><sup>0</sup>) vs Δm plane. The light grey area denotes (top) the constraints obtained by the previous equivalent analysis in ATLAS using the 8 TeV 20.3 fb<sup>-1</sup> dataset [17], and (d) the LEP lower χ̃<sub>1</sub><sup>±</sup> mass limit [56]. The pale blue line in the top right panel represents the mass splitting range that yields a dark matter relic density equal to the observed relic density, Ω h<sup>2</sup>=0.1186±0.0020 [172], when the mass parameters of all the decoupled SUSY partners are set to 5 TeV and tanβ is chosen such that the SM-like Higgs boson mass is consistent with the observed value [43]. The area above (below) the blue line represents a dark-matter relic density larger (smaller) than the observed.
Exclusion limits obtained for the $W\!Z$-mediated models in the (a,b) wino/bino (+) scenario, (c) the wino/bino (-) scenario, and (d) the higgsino scenario. The expected 95 CL sensitivity (dashed black line) is shown with ±1σ<sub>exp</sub> (yellow band) from experimental systematic uncertainties and statistical uncertainties on the data yields, the observed limit (red solid line) is shown with ±1σ<sub>theory</sub> (dotted red lines) from signal cross-section uncertainties. The statistical combination of the onshell $W\!Z$, offshell $W\!Z$, and compressed results is shown as the main contour, while the observed (expected) limits for each individual selection are overlaid in green, blue, and orange solid (dashed) lines, respectively. The exclusion is shown projected (a) onto the m(χ̃<sub>1</sub><sup>±</sup>, χ̃<sub>2</sub><sup>0</sup>) vs m(χ̃<sub>1</sub><sup>0</sup>) plane or (b,c,d) onto the m(χ̃<sub>2</sub><sup>0</sup>) vs Δm plane. The light grey area denotes (top) the constraints obtained by the previous equivalent analysis in ATLAS using the 8 TeV 20.3 fb<sup>-1</sup> dataset [17], and (d) the LEP lower χ̃<sub>1</sub><sup>±</sup> mass limit [56]. The pale blue line in the top right panel represents the mass splitting range that yields a dark matter relic density equal to the observed relic density, Ω h<sup>2</sup>=0.1186±0.0020 [172], when the mass parameters of all the decoupled SUSY partners are set to 5 TeV and tanβ is chosen such that the SM-like Higgs boson mass is consistent with the observed value [43]. The area above (below) the blue line represents a dark-matter relic density larger (smaller) than the observed.
Exclusion limits obtained for the $W\!Z$-mediated models in the (a,b) wino/bino (+) scenario, (c) the wino/bino (-) scenario, and (d) the higgsino scenario. The expected 95 CL sensitivity (dashed black line) is shown with ±1σ<sub>exp</sub> (yellow band) from experimental systematic uncertainties and statistical uncertainties on the data yields, the observed limit (red solid line) is shown with ±1σ<sub>theory</sub> (dotted red lines) from signal cross-section uncertainties. The statistical combination of the onshell $W\!Z$, offshell $W\!Z$, and compressed results is shown as the main contour, while the observed (expected) limits for each individual selection are overlaid in green, blue, and orange solid (dashed) lines, respectively. The exclusion is shown projected (a) onto the m(χ̃<sub>1</sub><sup>±</sup>, χ̃<sub>2</sub><sup>0</sup>) vs m(χ̃<sub>1</sub><sup>0</sup>) plane or (b,c,d) onto the m(χ̃<sub>2</sub><sup>0</sup>) vs Δm plane. The light grey area denotes (top) the constraints obtained by the previous equivalent analysis in ATLAS using the 8 TeV 20.3 fb<sup>-1</sup> dataset [17], and (d) the LEP lower χ̃<sub>1</sub><sup>±</sup> mass limit [56]. The pale blue line in the top right panel represents the mass splitting range that yields a dark matter relic density equal to the observed relic density, Ω h<sup>2</sup>=0.1186±0.0020 [172], when the mass parameters of all the decoupled SUSY partners are set to 5 TeV and tanβ is chosen such that the SM-like Higgs boson mass is consistent with the observed value [43]. The area above (below) the blue line represents a dark-matter relic density larger (smaller) than the observed.
Exclusion limits obtained for the $W\!Z$-mediated models in the (a,b) wino/bino (+) scenario, (c) the wino/bino (-) scenario, and (d) the higgsino scenario. The expected 95 CL sensitivity (dashed black line) is shown with ±1σ<sub>exp</sub> (yellow band) from experimental systematic uncertainties and statistical uncertainties on the data yields, the observed limit (red solid line) is shown with ±1σ<sub>theory</sub> (dotted red lines) from signal cross-section uncertainties. The statistical combination of the onshell $W\!Z$, offshell $W\!Z$, and compressed results is shown as the main contour, while the observed (expected) limits for each individual selection are overlaid in green, blue, and orange solid (dashed) lines, respectively. The exclusion is shown projected (a) onto the m(χ̃<sub>1</sub><sup>±</sup>, χ̃<sub>2</sub><sup>0</sup>) vs m(χ̃<sub>1</sub><sup>0</sup>) plane or (b,c,d) onto the m(χ̃<sub>2</sub><sup>0</sup>) vs Δm plane. The light grey area denotes (top) the constraints obtained by the previous equivalent analysis in ATLAS using the 8 TeV 20.3 fb<sup>-1</sup> dataset [17], and (d) the LEP lower χ̃<sub>1</sub><sup>±</sup> mass limit [56]. The pale blue line in the top right panel represents the mass splitting range that yields a dark matter relic density equal to the observed relic density, Ω h<sup>2</sup>=0.1186±0.0020 [172], when the mass parameters of all the decoupled SUSY partners are set to 5 TeV and tanβ is chosen such that the SM-like Higgs boson mass is consistent with the observed value [43]. The area above (below) the blue line represents a dark-matter relic density larger (smaller) than the observed.
Exclusion limits obtained for the $W\!Z$-mediated models in the (a,b) wino/bino (+) scenario, (c) the wino/bino (-) scenario, and (d) the higgsino scenario. The expected 95 CL sensitivity (dashed black line) is shown with ±1σ<sub>exp</sub> (yellow band) from experimental systematic uncertainties and statistical uncertainties on the data yields, the observed limit (red solid line) is shown with ±1σ<sub>theory</sub> (dotted red lines) from signal cross-section uncertainties. The statistical combination of the onshell $W\!Z$, offshell $W\!Z$, and compressed results is shown as the main contour, while the observed (expected) limits for each individual selection are overlaid in green, blue, and orange solid (dashed) lines, respectively. The exclusion is shown projected (a) onto the m(χ̃<sub>1</sub><sup>±</sup>, χ̃<sub>2</sub><sup>0</sup>) vs m(χ̃<sub>1</sub><sup>0</sup>) plane or (b,c,d) onto the m(χ̃<sub>2</sub><sup>0</sup>) vs Δm plane. The light grey area denotes (top) the constraints obtained by the previous equivalent analysis in ATLAS using the 8 TeV 20.3 fb<sup>-1</sup> dataset [17], and (d) the LEP lower χ̃<sub>1</sub><sup>±</sup> mass limit [56]. The pale blue line in the top right panel represents the mass splitting range that yields a dark matter relic density equal to the observed relic density, Ω h<sup>2</sup>=0.1186±0.0020 [172], when the mass parameters of all the decoupled SUSY partners are set to 5 TeV and tanβ is chosen such that the SM-like Higgs boson mass is consistent with the observed value [43]. The area above (below) the blue line represents a dark-matter relic density larger (smaller) than the observed.
Exclusion limits obtained for the $W\!Z$-mediated models in the (a,b) wino/bino (+) scenario, (c) the wino/bino (-) scenario, and (d) the higgsino scenario. The expected 95 CL sensitivity (dashed black line) is shown with ±1σ<sub>exp</sub> (yellow band) from experimental systematic uncertainties and statistical uncertainties on the data yields, the observed limit (red solid line) is shown with ±1σ<sub>theory</sub> (dotted red lines) from signal cross-section uncertainties. The statistical combination of the onshell $W\!Z$, offshell $W\!Z$, and compressed results is shown as the main contour, while the observed (expected) limits for each individual selection are overlaid in green, blue, and orange solid (dashed) lines, respectively. The exclusion is shown projected (a) onto the m(χ̃<sub>1</sub><sup>±</sup>, χ̃<sub>2</sub><sup>0</sup>) vs m(χ̃<sub>1</sub><sup>0</sup>) plane or (b,c,d) onto the m(χ̃<sub>2</sub><sup>0</sup>) vs Δm plane. The light grey area denotes (top) the constraints obtained by the previous equivalent analysis in ATLAS using the 8 TeV 20.3 fb<sup>-1</sup> dataset [17], and (d) the LEP lower χ̃<sub>1</sub><sup>±</sup> mass limit [56]. The pale blue line in the top right panel represents the mass splitting range that yields a dark matter relic density equal to the observed relic density, Ω h<sup>2</sup>=0.1186±0.0020 [172], when the mass parameters of all the decoupled SUSY partners are set to 5 TeV and tanβ is chosen such that the SM-like Higgs boson mass is consistent with the observed value [43]. The area above (below) the blue line represents a dark-matter relic density larger (smaller) than the observed.
Exclusion limits obtained for the $W\!Z$-mediated models in the (a,b) wino/bino (+) scenario, (c) the wino/bino (-) scenario, and (d) the higgsino scenario. The expected 95 CL sensitivity (dashed black line) is shown with ±1σ<sub>exp</sub> (yellow band) from experimental systematic uncertainties and statistical uncertainties on the data yields, the observed limit (red solid line) is shown with ±1σ<sub>theory</sub> (dotted red lines) from signal cross-section uncertainties. The statistical combination of the onshell $W\!Z$, offshell $W\!Z$, and compressed results is shown as the main contour, while the observed (expected) limits for each individual selection are overlaid in green, blue, and orange solid (dashed) lines, respectively. The exclusion is shown projected (a) onto the m(χ̃<sub>1</sub><sup>±</sup>, χ̃<sub>2</sub><sup>0</sup>) vs m(χ̃<sub>1</sub><sup>0</sup>) plane or (b,c,d) onto the m(χ̃<sub>2</sub><sup>0</sup>) vs Δm plane. The light grey area denotes (top) the constraints obtained by the previous equivalent analysis in ATLAS using the 8 TeV 20.3 fb<sup>-1</sup> dataset [17], and (d) the LEP lower χ̃<sub>1</sub><sup>±</sup> mass limit [56]. The pale blue line in the top right panel represents the mass splitting range that yields a dark matter relic density equal to the observed relic density, Ω h<sup>2</sup>=0.1186±0.0020 [172], when the mass parameters of all the decoupled SUSY partners are set to 5 TeV and tanβ is chosen such that the SM-like Higgs boson mass is consistent with the observed value [43]. The area above (below) the blue line represents a dark-matter relic density larger (smaller) than the observed.
Exclusion limits obtained for the $W\!Z$-mediated models in the (a,b) wino/bino (+) scenario, (c) the wino/bino (-) scenario, and (d) the higgsino scenario. The expected 95 CL sensitivity (dashed black line) is shown with ±1σ<sub>exp</sub> (yellow band) from experimental systematic uncertainties and statistical uncertainties on the data yields, the observed limit (red solid line) is shown with ±1σ<sub>theory</sub> (dotted red lines) from signal cross-section uncertainties. The statistical combination of the onshell $W\!Z$, offshell $W\!Z$, and compressed results is shown as the main contour, while the observed (expected) limits for each individual selection are overlaid in green, blue, and orange solid (dashed) lines, respectively. The exclusion is shown projected (a) onto the m(χ̃<sub>1</sub><sup>±</sup>, χ̃<sub>2</sub><sup>0</sup>) vs m(χ̃<sub>1</sub><sup>0</sup>) plane or (b,c,d) onto the m(χ̃<sub>2</sub><sup>0</sup>) vs Δm plane. The light grey area denotes (top) the constraints obtained by the previous equivalent analysis in ATLAS using the 8 TeV 20.3 fb<sup>-1</sup> dataset [17], and (d) the LEP lower χ̃<sub>1</sub><sup>±</sup> mass limit [56]. The pale blue line in the top right panel represents the mass splitting range that yields a dark matter relic density equal to the observed relic density, Ω h<sup>2</sup>=0.1186±0.0020 [172], when the mass parameters of all the decoupled SUSY partners are set to 5 TeV and tanβ is chosen such that the SM-like Higgs boson mass is consistent with the observed value [43]. The area above (below) the blue line represents a dark-matter relic density larger (smaller) than the observed.
Exclusion limits obtained for the $W\!Z$-mediated models in the (a,b) wino/bino (+) scenario, (c) the wino/bino (-) scenario, and (d) the higgsino scenario. The expected 95 CL sensitivity (dashed black line) is shown with ±1σ<sub>exp</sub> (yellow band) from experimental systematic uncertainties and statistical uncertainties on the data yields, the observed limit (red solid line) is shown with ±1σ<sub>theory</sub> (dotted red lines) from signal cross-section uncertainties. The statistical combination of the onshell $W\!Z$, offshell $W\!Z$, and compressed results is shown as the main contour, while the observed (expected) limits for each individual selection are overlaid in green, blue, and orange solid (dashed) lines, respectively. The exclusion is shown projected (a) onto the m(χ̃<sub>1</sub><sup>±</sup>, χ̃<sub>2</sub><sup>0</sup>) vs m(χ̃<sub>1</sub><sup>0</sup>) plane or (b,c,d) onto the m(χ̃<sub>2</sub><sup>0</sup>) vs Δm plane. The light grey area denotes (top) the constraints obtained by the previous equivalent analysis in ATLAS using the 8 TeV 20.3 fb<sup>-1</sup> dataset [17], and (d) the LEP lower χ̃<sub>1</sub><sup>±</sup> mass limit [56]. The pale blue line in the top right panel represents the mass splitting range that yields a dark matter relic density equal to the observed relic density, Ω h<sup>2</sup>=0.1186±0.0020 [172], when the mass parameters of all the decoupled SUSY partners are set to 5 TeV and tanβ is chosen such that the SM-like Higgs boson mass is consistent with the observed value [43]. The area above (below) the blue line represents a dark-matter relic density larger (smaller) than the observed.
Exclusion limits obtained for the $W\!Z$-mediated models in the (a,b) wino/bino (+) scenario, (c) the wino/bino (-) scenario, and (d) the higgsino scenario. The expected 95 CL sensitivity (dashed black line) is shown with ±1σ<sub>exp</sub> (yellow band) from experimental systematic uncertainties and statistical uncertainties on the data yields, the observed limit (red solid line) is shown with ±1σ<sub>theory</sub> (dotted red lines) from signal cross-section uncertainties. The statistical combination of the onshell $W\!Z$, offshell $W\!Z$, and compressed results is shown as the main contour, while the observed (expected) limits for each individual selection are overlaid in green, blue, and orange solid (dashed) lines, respectively. The exclusion is shown projected (a) onto the m(χ̃<sub>1</sub><sup>±</sup>, χ̃<sub>2</sub><sup>0</sup>) vs m(χ̃<sub>1</sub><sup>0</sup>) plane or (b,c,d) onto the m(χ̃<sub>2</sub><sup>0</sup>) vs Δm plane. The light grey area denotes (top) the constraints obtained by the previous equivalent analysis in ATLAS using the 8 TeV 20.3 fb<sup>-1</sup> dataset [17], and (d) the LEP lower χ̃<sub>1</sub><sup>±</sup> mass limit [56]. The pale blue line in the top right panel represents the mass splitting range that yields a dark matter relic density equal to the observed relic density, Ω h<sup>2</sup>=0.1186±0.0020 [172], when the mass parameters of all the decoupled SUSY partners are set to 5 TeV and tanβ is chosen such that the SM-like Higgs boson mass is consistent with the observed value [43]. The area above (below) the blue line represents a dark-matter relic density larger (smaller) than the observed.
Exclusion limits obtained for the $W\!Z$-mediated models in the (a,b) wino/bino (+) scenario, (c) the wino/bino (-) scenario, and (d) the higgsino scenario. The expected 95 CL sensitivity (dashed black line) is shown with ±1σ<sub>exp</sub> (yellow band) from experimental systematic uncertainties and statistical uncertainties on the data yields, the observed limit (red solid line) is shown with ±1σ<sub>theory</sub> (dotted red lines) from signal cross-section uncertainties. The statistical combination of the onshell $W\!Z$, offshell $W\!Z$, and compressed results is shown as the main contour, while the observed (expected) limits for each individual selection are overlaid in green, blue, and orange solid (dashed) lines, respectively. The exclusion is shown projected (a) onto the m(χ̃<sub>1</sub><sup>±</sup>, χ̃<sub>2</sub><sup>0</sup>) vs m(χ̃<sub>1</sub><sup>0</sup>) plane or (b,c,d) onto the m(χ̃<sub>2</sub><sup>0</sup>) vs Δm plane. The light grey area denotes (top) the constraints obtained by the previous equivalent analysis in ATLAS using the 8 TeV 20.3 fb<sup>-1</sup> dataset [17], and (d) the LEP lower χ̃<sub>1</sub><sup>±</sup> mass limit [56]. The pale blue line in the top right panel represents the mass splitting range that yields a dark matter relic density equal to the observed relic density, Ω h<sup>2</sup>=0.1186±0.0020 [172], when the mass parameters of all the decoupled SUSY partners are set to 5 TeV and tanβ is chosen such that the SM-like Higgs boson mass is consistent with the observed value [43]. The area above (below) the blue line represents a dark-matter relic density larger (smaller) than the observed.
Exclusion limits obtained for the $W\!Z$-mediated models in the (a,b) wino/bino (+) scenario, (c) the wino/bino (-) scenario, and (d) the higgsino scenario. The expected 95 CL sensitivity (dashed black line) is shown with ±1σ<sub>exp</sub> (yellow band) from experimental systematic uncertainties and statistical uncertainties on the data yields, the observed limit (red solid line) is shown with ±1σ<sub>theory</sub> (dotted red lines) from signal cross-section uncertainties. The statistical combination of the onshell $W\!Z$, offshell $W\!Z$, and compressed results is shown as the main contour, while the observed (expected) limits for each individual selection are overlaid in green, blue, and orange solid (dashed) lines, respectively. The exclusion is shown projected (a) onto the m(χ̃<sub>1</sub><sup>±</sup>, χ̃<sub>2</sub><sup>0</sup>) vs m(χ̃<sub>1</sub><sup>0</sup>) plane or (b,c,d) onto the m(χ̃<sub>2</sub><sup>0</sup>) vs Δm plane. The light grey area denotes (top) the constraints obtained by the previous equivalent analysis in ATLAS using the 8 TeV 20.3 fb<sup>-1</sup> dataset [17], and (d) the LEP lower χ̃<sub>1</sub><sup>±</sup> mass limit [56]. The pale blue line in the top right panel represents the mass splitting range that yields a dark matter relic density equal to the observed relic density, Ω h<sup>2</sup>=0.1186±0.0020 [172], when the mass parameters of all the decoupled SUSY partners are set to 5 TeV and tanβ is chosen such that the SM-like Higgs boson mass is consistent with the observed value [43]. The area above (below) the blue line represents a dark-matter relic density larger (smaller) than the observed.
Exclusion limits obtained for the $W\!h$med in the wino/bino (+) scenario, calculated using the $W\!h$ SRs and projected onto the m(χ̃<sub>1</sub><sup>±</sup>, χ̃<sub>2</sub><sup>0</sup>) vs m(χ̃<sub>1</sub><sup>0</sup>) plane. The expected 95 CL sensitivity (dashed black line) is shown with ±1σ<sub>{exp}</sub> (yellow band) from experimental systematic uncertainties and statistical uncertainties on the data yields, the observed limit (red solid line) is shown with ±1σ<sub>theory</sub> (dotted red lines) from signal cross-section uncertainties.
Exclusion limits obtained for the $W\!h$med in the wino/bino (+) scenario, calculated using the $W\!h$ SRs and projected onto the m(χ̃<sub>1</sub><sup>±</sup>, χ̃<sub>2</sub><sup>0</sup>) vs m(χ̃<sub>1</sub><sup>0</sup>) plane. The expected 95 CL sensitivity (dashed black line) is shown with ±1σ<sub>{exp}</sub> (yellow band) from experimental systematic uncertainties and statistical uncertainties on the data yields, the observed limit (red solid line) is shown with ±1σ<sub>theory</sub> (dotted red lines) from signal cross-section uncertainties.
Exclusion limits obtained for the $W\!h$med in the wino/bino (+) scenario, calculated using the $W\!h$ SRs and projected onto the m(χ̃<sub>1</sub><sup>±</sup>, χ̃<sub>2</sub><sup>0</sup>) vs m(χ̃<sub>1</sub><sup>0</sup>) plane. The expected 95 CL sensitivity (dashed black line) is shown with ±1σ<sub>{exp}</sub> (yellow band) from experimental systematic uncertainties and statistical uncertainties on the data yields, the observed limit (red solid line) is shown with ±1σ<sub>theory</sub> (dotted red lines) from signal cross-section uncertainties.
Exclusion limits obtained for the $W\!h$med in the wino/bino (+) scenario, calculated using the $W\!h$ SRs and projected onto the m(χ̃<sub>1</sub><sup>±</sup>, χ̃<sub>2</sub><sup>0</sup>) vs m(χ̃<sub>1</sub><sup>0</sup>) plane. The expected 95 CL sensitivity (dashed black line) is shown with ±1σ<sub>{exp}</sub> (yellow band) from experimental systematic uncertainties and statistical uncertainties on the data yields, the observed limit (red solid line) is shown with ±1σ<sub>theory</sub> (dotted red lines) from signal cross-section uncertainties.
Exclusion limits obtained for the $W\!h$med in the wino/bino (+) scenario, calculated using the $W\!h$ SRs and projected onto the m(χ̃<sub>1</sub><sup>±</sup>, χ̃<sub>2</sub><sup>0</sup>) vs m(χ̃<sub>1</sub><sup>0</sup>) plane. The expected 95 CL sensitivity (dashed black line) is shown with ±1σ<sub>{exp}</sub> (yellow band) from experimental systematic uncertainties and statistical uncertainties on the data yields, the observed limit (red solid line) is shown with ±1σ<sub>theory</sub> (dotted red lines) from signal cross-section uncertainties.
Exclusion limits obtained for the $W\!h$med in the wino/bino (+) scenario, calculated using the $W\!h$ SRs and projected onto the m(χ̃<sub>1</sub><sup>±</sup>, χ̃<sub>2</sub><sup>0</sup>) vs m(χ̃<sub>1</sub><sup>0</sup>) plane. The expected 95 CL sensitivity (dashed black line) is shown with ±1σ<sub>{exp}</sub> (yellow band) from experimental systematic uncertainties and statistical uncertainties on the data yields, the observed limit (red solid line) is shown with ±1σ<sub>theory</sub> (dotted red lines) from signal cross-section uncertainties.
Comparison of the observed data and expected SM background yields in the CRs and VRs of the RJR selection. The SM prediction is taken from the background-only fit. The "FNP leptons" category contains backgrounds from tt̄, tW, WW and Z+jets processes. The "Others" category contains backgrounds from Higgs and rare top processes. The hatched band indicates the combined theoretical, experimental, and MC statistical uncertainties. The bottom panel shows the significance of the difference between the observed and expected yields, calculated with the profile likelihood method from [169], adding a minus sign if the yield is below the prediction.
Observed and expected yields after the background-only fit in the SRs for the RJR selection. The "FNP leptons" category contains backgrounds from tt̄, tW, WW and Z+jets processes. The "Others" category contains backgrounds from Higgs and rare top processes. Combined statistical and systematic uncertainties are presented.
Example of kinematic distributions after the background-only fit, showing the data and the post-fit expected background, in regions of the RJR selection. The figure shows the (a) p<sub>T</sub><sup>ℓ<sub>1</sub></sup> and (b) H<sup>PP</sup><sub>3,1</sub> distributions in SR3ℓ-Low, and the (c) p<sup>CM</sup><sub>T ISR</sub> and (d) R<sub>ISR</sub> distributions in SR3ℓ-ISR. The last bin includes overflow. The "FNP leptons" category contains backgrounds from tt̄, tW, WW and Z+jets processes. The "Others" category contains backgrounds from Higgs and rare top processes. Distributions for wino/bino (+) χ̃<sub>1</sub><sup>±</sup>/χ̃<sub>2</sub><sup>0</sup> → $W\!Z$ signals are overlaid, with mass values given as (m(χ̃<sub>1</sub><sup>±</sup>),m(χ̃<sub>1</sub><sup>0</sup>)) GeV. The bottom panel shows the ratio of the observed data to the predicted yields. The hatched bands indicate the combined theoretical, experimental, and MC statistical uncertainties.
Example of kinematic distributions after the background-only fit, showing the data and the post-fit expected background, in regions of the RJR selection. The figure shows the (a) p<sub>T</sub><sup>ℓ<sub>1</sub></sup> and (b) H<sup>PP</sup><sub>3,1</sub> distributions in SR3ℓ-Low, and the (c) p<sup>CM</sup><sub>T ISR</sub> and (d) R<sub>ISR</sub> distributions in SR3ℓ-ISR. The last bin includes overflow. The "FNP leptons" category contains backgrounds from tt̄, tW, WW and Z+jets processes. The "Others" category contains backgrounds from Higgs and rare top processes. Distributions for wino/bino (+) χ̃<sub>1</sub><sup>±</sup>/χ̃<sub>2</sub><sup>0</sup> → $W\!Z$ signals are overlaid, with mass values given as (m(χ̃<sub>1</sub><sup>±</sup>),m(χ̃<sub>1</sub><sup>0</sup>)) GeV. The bottom panel shows the ratio of the observed data to the predicted yields. The hatched bands indicate the combined theoretical, experimental, and MC statistical uncertainties.
Example of kinematic distributions after the background-only fit, showing the data and the post-fit expected background, in regions of the RJR selection. The figure shows the (a) p<sub>T</sub><sup>ℓ<sub>1</sub></sup> and (b) H<sup>PP</sup><sub>3,1</sub> distributions in SR3ℓ-Low, and the (c) p<sup>CM</sup><sub>T ISR</sub> and (d) R<sub>ISR</sub> distributions in SR3ℓ-ISR. The last bin includes overflow. The "FNP leptons" category contains backgrounds from tt̄, tW, WW and Z+jets processes. The "Others" category contains backgrounds from Higgs and rare top processes. Distributions for wino/bino (+) χ̃<sub>1</sub><sup>±</sup>/χ̃<sub>2</sub><sup>0</sup> → $W\!Z$ signals are overlaid, with mass values given as (m(χ̃<sub>1</sub><sup>±</sup>),m(χ̃<sub>1</sub><sup>0</sup>)) GeV. The bottom panel shows the ratio of the observed data to the predicted yields. The hatched bands indicate the combined theoretical, experimental, and MC statistical uncertainties.
Example of kinematic distributions after the background-only fit, showing the data and the post-fit expected background, in regions of the RJR selection. The figure shows the (a) p<sub>T</sub><sup>ℓ<sub>1</sub></sup> and (b) H<sup>PP</sup><sub>3,1</sub> distributions in SR3ℓ-Low, and the (c) p<sup>CM</sup><sub>T ISR</sub> and (d) R<sub>ISR</sub> distributions in SR3ℓ-ISR. The last bin includes overflow. The "FNP leptons" category contains backgrounds from tt̄, tW, WW and Z+jets processes. The "Others" category contains backgrounds from Higgs and rare top processes. Distributions for wino/bino (+) χ̃<sub>1</sub><sup>±</sup>/χ̃<sub>2</sub><sup>0</sup> → $W\!Z$ signals are overlaid, with mass values given as (m(χ̃<sub>1</sub><sup>±</sup>),m(χ̃<sub>1</sub><sup>0</sup>)) GeV. The bottom panel shows the ratio of the observed data to the predicted yields. The hatched bands indicate the combined theoretical, experimental, and MC statistical uncertainties.
{Results of the discovery-fit for the SRs of the RJR selection, calculated using pseudo-experiments.} The first and second column list the 95 CL upper limits on the visible cross section (σ<sub>vis</sub><sup>95</sup>) and on the number of signal events (S<sub>obs</sub><sup>95</sup>). The third column (S<sub>exp</sub><sup>95</sup>) shows the 95 CL upper limit on the number of signal events, given the expected number (and ± 1σ excursions on the expectation) of background events. The last two columns indicate the CLb value, i.e. the confidence level observed for the background-only hypothesis, and the discovery p-value (p(s = 0)). If the observed yield is below the expected yield, the p-value is capped at 0.5. vspace{0.5em}
Exclusion limits obtained for the $W\!Z$-mediated model, for the (1st and 2nd row) wino/bino (+) scenario, (3rd row) the wino/bino (-) scenario, and (4th row) the higgsino scenario, as in Figure 16. Black numbers represent the observed (a) and expected (b) upper cross-section limits.
Exclusion limits obtained for the $W\!Z$-mediated model, for the (1st and 2nd row) wino/bino (+) scenario, (3rd row) the wino/bino (-) scenario, and (4th row) the higgsino scenario, as in Figure 16. Black numbers represent the observed (a) and expected (b) upper cross-section limits.
Exclusion limits obtained for the $W\!Z$-mediated model, for the (1st and 2nd row) wino/bino (+) scenario, (3rd row) the wino/bino (-) scenario, and (4th row) the higgsino scenario, as in Figure 16. Black numbers represent the observed (a) and expected (b) upper cross-section limits.
Exclusion limits obtained for the $W\!Z$-mediated model, for the (1st and 2nd row) wino/bino (+) scenario, (3rd row) the wino/bino (-) scenario, and (4th row) the higgsino scenario, as in Figure 16. Black numbers represent the observed (a) and expected (b) upper cross-section limits.
Exclusion limits obtained for the $W\!Z$-mediated model, for the (1st and 2nd row) wino/bino (+) scenario, (3rd row) the wino/bino (-) scenario, and (4th row) the higgsino scenario, as in Figure 16. Black numbers represent the observed (a) and expected (b) upper cross-section limits.
Exclusion limits obtained for the $W\!Z$-mediated model, for the (1st and 2nd row) wino/bino (+) scenario, (3rd row) the wino/bino (-) scenario, and (4th row) the higgsino scenario, as in Figure 16. Black numbers represent the observed (a) and expected (b) upper cross-section limits.
Exclusion limits obtained for the $W\!Z$-mediated model, for the (1st and 2nd row) wino/bino (+) scenario, (3rd row) the wino/bino (-) scenario, and (4th row) the higgsino scenario, as in Figure 16. Black numbers represent the observed (a) and expected (b) upper cross-section limits.
Exclusion limits obtained for the $W\!Z$-mediated model, for the (1st and 2nd row) wino/bino (+) scenario, (3rd row) the wino/bino (-) scenario, and (4th row) the higgsino scenario, as in Figure 16. Black numbers represent the observed (a) and expected (b) upper cross-section limits.
Exclusion limits obtained for the $W\!h$-mediated model, for the wino/bino (+) scenario, as in Figure 17. The black numbers represent the observed (a,c,e,g) and expected (b,d,f,h) upper cross-section limits.
Exclusion limits obtained for the $W\!h$-mediated model, for the wino/bino (+) scenario, as in Figure 17. The black numbers represent the observed (a,c,e,g) and expected (b,d,f,h) upper cross-section limits.
The χ̃<sub>1</sub><sup>±</sup>/χ̃<sub>2</sub><sup>0</sup> (a,c) truth-level acceptances and (b,d) reconstruction efficiencies for the wino/bino (+) scenario, in the inclusive (a,b) SR<sup>WZ</sup><sub>0j</sub>, (c,d) SR<sup>WZ</sup><sub>nj</sub> regions of the onshell $W\!Z$ selection, after MC-to-data efficiency weights are applied.
The χ̃<sub>1</sub><sup>±</sup>/χ̃<sub>2</sub><sup>0</sup> (a,c) truth-level acceptances and (b,d) reconstruction efficiencies for the wino/bino (+) scenario, in the inclusive (a,b) SR<sup>WZ</sup><sub>0j</sub>, (c,d) SR<sup>WZ</sup><sub>nj</sub> regions of the onshell $W\!Z$ selection, after MC-to-data efficiency weights are applied.
The χ̃<sub>1</sub><sup>±</sup>/χ̃<sub>2</sub><sup>0</sup> (a,c) truth-level acceptances and (b,d) reconstruction efficiencies for the wino/bino (+) scenario, in the inclusive (a,b) SR<sup>WZ</sup><sub>0j</sub>, (c,d) SR<sup>WZ</sup><sub>nj</sub> regions of the onshell $W\!Z$ selection, after MC-to-data efficiency weights are applied.
The χ̃<sub>1</sub><sup>±</sup>/χ̃<sub>2</sub><sup>0</sup> (a,c) truth-level acceptances and (b,d) reconstruction efficiencies for the wino/bino (+) scenario, in the inclusive (a,b) SR<sup>WZ</sup><sub>0j</sub>, (c,d) SR<sup>WZ</sup><sub>nj</sub> regions of the onshell $W\!Z$ selection, after MC-to-data efficiency weights are applied.
The χ̃<sub>1</sub><sup>±</sup>/χ̃<sub>2</sub><sup>0</sup> (a,c,e) truth-level acceptances and (b,d,f) reconstruction efficiencies for the wino/bino (+) scenario, in the inclusive (a,b) SR<sup>Wh</sup><sub>low-m<sub>ll</sub>-0j</sub>, (c,d) SR<sup>Wh</sup><sub>low-m<sub>ll</sub>-nj</sub>, and (e,f) SR<sup>Wh</sup><sub>DF</sub> regions of the $W\!h$ selection, after MC-to-data efficiency weights are applied.
The χ̃<sub>1</sub><sup>±</sup>/χ̃<sub>2</sub><sup>0</sup> (a,c,e) truth-level acceptances and (b,d,f) reconstruction efficiencies for the wino/bino (+) scenario, in the inclusive (a,b) SR<sup>Wh</sup><sub>low-m<sub>ll</sub>-0j</sub>, (c,d) SR<sup>Wh</sup><sub>low-m<sub>ll</sub>-nj</sub>, and (e,f) SR<sup>Wh</sup><sub>DF</sub> regions of the $W\!h$ selection, after MC-to-data efficiency weights are applied.
The χ̃<sub>1</sub><sup>±</sup>/χ̃<sub>2</sub><sup>0</sup> (a,c,e) truth-level acceptances and (b,d,f) reconstruction efficiencies for the wino/bino (+) scenario, in the inclusive (a,b) SR<sup>Wh</sup><sub>low-m<sub>ll</sub>-0j</sub>, (c,d) SR<sup>Wh</sup><sub>low-m<sub>ll</sub>-nj</sub>, and (e,f) SR<sup>Wh</sup><sub>DF</sub> regions of the $W\!h$ selection, after MC-to-data efficiency weights are applied.
The χ̃<sub>1</sub><sup>±</sup>/χ̃<sub>2</sub><sup>0</sup> (a,c,e) truth-level acceptances and (b,d,f) reconstruction efficiencies for the wino/bino (+) scenario, in the inclusive (a,b) SR<sup>Wh</sup><sub>low-m<sub>ll</sub>-0j</sub>, (c,d) SR<sup>Wh</sup><sub>low-m<sub>ll</sub>-nj</sub>, and (e,f) SR<sup>Wh</sup><sub>DF</sub> regions of the $W\!h$ selection, after MC-to-data efficiency weights are applied.
The χ̃<sub>1</sub><sup>±</sup>/χ̃<sub>2</sub><sup>0</sup> (a,c,e) truth-level acceptances and (b,d,f) reconstruction efficiencies for the wino/bino (+) scenario, in the inclusive (a,b) SR<sup>Wh</sup><sub>low-m<sub>ll</sub>-0j</sub>, (c,d) SR<sup>Wh</sup><sub>low-m<sub>ll</sub>-nj</sub>, and (e,f) SR<sup>Wh</sup><sub>DF</sub> regions of the $W\!h$ selection, after MC-to-data efficiency weights are applied.
The χ̃<sub>1</sub><sup>±</sup>/χ̃<sub>2</sub><sup>0</sup> (a,c,e) truth-level acceptances and (b,d,f) reconstruction efficiencies for the wino/bino (+) scenario, in the inclusive (a,b) SR<sup>Wh</sup><sub>low-m<sub>ll</sub>-0j</sub>, (c,d) SR<sup>Wh</sup><sub>low-m<sub>ll</sub>-nj</sub>, and (e,f) SR<sup>Wh</sup><sub>DF</sub> regions of the $W\!h$ selection, after MC-to-data efficiency weights are applied.
The χ̃<sub>1</sub><sup>±</sup>/χ̃<sub>2</sub><sup>0</sup> (a,c,e,g) truth-level acceptances and (b,d,f,h) reconstruction efficiencies for the wino/bino (+) scenario, in the inclusive (a,b) SR<sup>offWZ</sup><sub>lowETmiss</sub>-0j, (c,d) SR<sup>offWZ</sup><sub>lowETmiss</sub>-nj, (e,f) SR<sup>offWZ</sup><sub>highETmiss</sub>-0j, and (g,h) SR<sup>offWZ</sup><sub>highETmiss</sub>-nj regions of the offshell $W\!Z$ selection, after MC-to-data efficiency weights are applied.
The χ̃<sub>1</sub><sup>±</sup>/χ̃<sub>2</sub><sup>0</sup> (a,c,e,g) truth-level acceptances and (b,d,f,h) reconstruction efficiencies for the wino/bino (+) scenario, in the inclusive (a,b) SR<sup>offWZ</sup><sub>lowETmiss</sub>-0j, (c,d) SR<sup>offWZ</sup><sub>lowETmiss</sub>-nj, (e,f) SR<sup>offWZ</sup><sub>highETmiss</sub>-0j, and (g,h) SR<sup>offWZ</sup><sub>highETmiss</sub>-nj regions of the offshell $W\!Z$ selection, after MC-to-data efficiency weights are applied.
The χ̃<sub>1</sub><sup>±</sup>/χ̃<sub>2</sub><sup>0</sup> (a,c,e,g) truth-level acceptances and (b,d,f,h) reconstruction efficiencies for the wino/bino (+) scenario, in the inclusive (a,b) SR<sup>offWZ</sup><sub>lowETmiss</sub>-0j, (c,d) SR<sup>offWZ</sup><sub>lowETmiss</sub>-nj, (e,f) SR<sup>offWZ</sup><sub>highETmiss</sub>-0j, and (g,h) SR<sup>offWZ</sup><sub>highETmiss</sub>-nj regions of the offshell $W\!Z$ selection, after MC-to-data efficiency weights are applied.
The χ̃<sub>1</sub><sup>±</sup>/χ̃<sub>2</sub><sup>0</sup> (a,c,e,g) truth-level acceptances and (b,d,f,h) reconstruction efficiencies for the wino/bino (+) scenario, in the inclusive (a,b) SR<sup>offWZ</sup><sub>lowETmiss</sub>-0j, (c,d) SR<sup>offWZ</sup><sub>lowETmiss</sub>-nj, (e,f) SR<sup>offWZ</sup><sub>highETmiss</sub>-0j, and (g,h) SR<sup>offWZ</sup><sub>highETmiss</sub>-nj regions of the offshell $W\!Z$ selection, after MC-to-data efficiency weights are applied.
The χ̃<sub>1</sub><sup>±</sup>/χ̃<sub>2</sub><sup>0</sup> (a,c,e,g) truth-level acceptances and (b,d,f,h) reconstruction efficiencies for the wino/bino (+) scenario, in the inclusive (a,b) SR<sup>offWZ</sup><sub>lowETmiss</sub>-0j, (c,d) SR<sup>offWZ</sup><sub>lowETmiss</sub>-nj, (e,f) SR<sup>offWZ</sup><sub>highETmiss</sub>-0j, and (g,h) SR<sup>offWZ</sup><sub>highETmiss</sub>-nj regions of the offshell $W\!Z$ selection, after MC-to-data efficiency weights are applied.
The χ̃<sub>1</sub><sup>±</sup>/χ̃<sub>2</sub><sup>0</sup> (a,c,e,g) truth-level acceptances and (b,d,f,h) reconstruction efficiencies for the wino/bino (+) scenario, in the inclusive (a,b) SR<sup>offWZ</sup><sub>lowETmiss</sub>-0j, (c,d) SR<sup>offWZ</sup><sub>lowETmiss</sub>-nj, (e,f) SR<sup>offWZ</sup><sub>highETmiss</sub>-0j, and (g,h) SR<sup>offWZ</sup><sub>highETmiss</sub>-nj regions of the offshell $W\!Z$ selection, after MC-to-data efficiency weights are applied.
The χ̃<sub>1</sub><sup>±</sup>/χ̃<sub>2</sub><sup>0</sup> (a,c,e,g) truth-level acceptances and (b,d,f,h) reconstruction efficiencies for the wino/bino (+) scenario, in the inclusive (a,b) SR<sup>offWZ</sup><sub>lowETmiss</sub>-0j, (c,d) SR<sup>offWZ</sup><sub>lowETmiss</sub>-nj, (e,f) SR<sup>offWZ</sup><sub>highETmiss</sub>-0j, and (g,h) SR<sup>offWZ</sup><sub>highETmiss</sub>-nj regions of the offshell $W\!Z$ selection, after MC-to-data efficiency weights are applied.
The χ̃<sub>1</sub><sup>±</sup>/χ̃<sub>2</sub><sup>0</sup> (a,c,e,g) truth-level acceptances and (b,d,f,h) reconstruction efficiencies for the wino/bino (+) scenario, in the inclusive (a,b) SR<sup>offWZ</sup><sub>lowETmiss</sub>-0j, (c,d) SR<sup>offWZ</sup><sub>lowETmiss</sub>-nj, (e,f) SR<sup>offWZ</sup><sub>highETmiss</sub>-0j, and (g,h) SR<sup>offWZ</sup><sub>highETmiss</sub>-nj regions of the offshell $W\!Z$ selection, after MC-to-data efficiency weights are applied.
The χ̃<sub>1</sub><sup>±</sup>/χ̃<sub>2</sub><sup>0</sup> (a,c,e,g) truth-level acceptances and (b,d,f,h) reconstruction efficiencies for the wino/bino (-) scenario, in the inclusive (a,b) SR<sup>offWZ</sup><sub>lowETmiss</sub>-0j, (c,d) SR<sup>offWZ</sup><sub>lowETmiss</sub>-nj, (e,f) SR<sup>offWZ</sup><sub>highETmiss</sub>-0j, and (g,h) SR<sup>offWZ</sup><sub>highETmiss</sub>-nj regions of the offshell $W\!Z$ selection, after MC-to-data efficiency weights are applied.
The χ̃<sub>1</sub><sup>±</sup>/χ̃<sub>2</sub><sup>0</sup> (a,c,e,g) truth-level acceptances and (b,d,f,h) reconstruction efficiencies for the wino/bino (-) scenario, in the inclusive (a,b) SR<sup>offWZ</sup><sub>lowETmiss</sub>-0j, (c,d) SR<sup>offWZ</sup><sub>lowETmiss</sub>-nj, (e,f) SR<sup>offWZ</sup><sub>highETmiss</sub>-0j, and (g,h) SR<sup>offWZ</sup><sub>highETmiss</sub>-nj regions of the offshell $W\!Z$ selection, after MC-to-data efficiency weights are applied.
The χ̃<sub>1</sub><sup>±</sup>/χ̃<sub>2</sub><sup>0</sup> (a,c,e,g) truth-level acceptances and (b,d,f,h) reconstruction efficiencies for the wino/bino (-) scenario, in the inclusive (a,b) SR<sup>offWZ</sup><sub>lowETmiss</sub>-0j, (c,d) SR<sup>offWZ</sup><sub>lowETmiss</sub>-nj, (e,f) SR<sup>offWZ</sup><sub>highETmiss</sub>-0j, and (g,h) SR<sup>offWZ</sup><sub>highETmiss</sub>-nj regions of the offshell $W\!Z$ selection, after MC-to-data efficiency weights are applied.
The χ̃<sub>1</sub><sup>±</sup>/χ̃<sub>2</sub><sup>0</sup> (a,c,e,g) truth-level acceptances and (b,d,f,h) reconstruction efficiencies for the wino/bino (-) scenario, in the inclusive (a,b) SR<sup>offWZ</sup><sub>lowETmiss</sub>-0j, (c,d) SR<sup>offWZ</sup><sub>lowETmiss</sub>-nj, (e,f) SR<sup>offWZ</sup><sub>highETmiss</sub>-0j, and (g,h) SR<sup>offWZ</sup><sub>highETmiss</sub>-nj regions of the offshell $W\!Z$ selection, after MC-to-data efficiency weights are applied.
The χ̃<sub>1</sub><sup>±</sup>/χ̃<sub>2</sub><sup>0</sup> (a,c,e,g) truth-level acceptances and (b,d,f,h) reconstruction efficiencies for the wino/bino (-) scenario, in the inclusive (a,b) SR<sup>offWZ</sup><sub>lowETmiss</sub>-0j, (c,d) SR<sup>offWZ</sup><sub>lowETmiss</sub>-nj, (e,f) SR<sup>offWZ</sup><sub>highETmiss</sub>-0j, and (g,h) SR<sup>offWZ</sup><sub>highETmiss</sub>-nj regions of the offshell $W\!Z$ selection, after MC-to-data efficiency weights are applied.
The χ̃<sub>1</sub><sup>±</sup>/χ̃<sub>2</sub><sup>0</sup> (a,c,e,g) truth-level acceptances and (b,d,f,h) reconstruction efficiencies for the wino/bino (-) scenario, in the inclusive (a,b) SR<sup>offWZ</sup><sub>lowETmiss</sub>-0j, (c,d) SR<sup>offWZ</sup><sub>lowETmiss</sub>-nj, (e,f) SR<sup>offWZ</sup><sub>highETmiss</sub>-0j, and (g,h) SR<sup>offWZ</sup><sub>highETmiss</sub>-nj regions of the offshell $W\!Z$ selection, after MC-to-data efficiency weights are applied.
The χ̃<sub>1</sub><sup>±</sup>/χ̃<sub>2</sub><sup>0</sup> (a,c,e,g) truth-level acceptances and (b,d,f,h) reconstruction efficiencies for the wino/bino (-) scenario, in the inclusive (a,b) SR<sup>offWZ</sup><sub>lowETmiss</sub>-0j, (c,d) SR<sup>offWZ</sup><sub>lowETmiss</sub>-nj, (e,f) SR<sup>offWZ</sup><sub>highETmiss</sub>-0j, and (g,h) SR<sup>offWZ</sup><sub>highETmiss</sub>-nj regions of the offshell $W\!Z$ selection, after MC-to-data efficiency weights are applied.
The χ̃<sub>1</sub><sup>±</sup>/χ̃<sub>2</sub><sup>0</sup> (a,c,e,g) truth-level acceptances and (b,d,f,h) reconstruction efficiencies for the wino/bino (-) scenario, in the inclusive (a,b) SR<sup>offWZ</sup><sub>lowETmiss</sub>-0j, (c,d) SR<sup>offWZ</sup><sub>lowETmiss</sub>-nj, (e,f) SR<sup>offWZ</sup><sub>highETmiss</sub>-0j, and (g,h) SR<sup>offWZ</sup><sub>highETmiss</sub>-nj regions of the offshell $W\!Z$ selection, after MC-to-data efficiency weights are applied.
The χ̃<sub>1</sub><sup>±</sup>/χ̃<sub>2</sub><sup>0</sup> (a,c,e,g) truth-level acceptances and (b,d,f,h) reconstruction efficiencies for the higgsino scenario, in the inclusive (a,b) SR<sup>offWZ</sup><sub>lowETmiss</sub>-0j, (c,d) SR<sup>offWZ</sup><sub>lowETmiss</sub>-nj, (e,f) SR<sup>offWZ</sup><sub>highETmiss</sub>-0j, and (g,h) SR<sup>offWZ</sup><sub>highETmiss</sub>-nj regions of the offshell $W\!Z$ selection, after MC-to-data efficiency weights are applied.
The χ̃<sub>1</sub><sup>±</sup>/χ̃<sub>2</sub><sup>0</sup> (a,c,e,g) truth-level acceptances and (b,d,f,h) reconstruction efficiencies for the higgsino scenario, in the inclusive (a,b) SR<sup>offWZ</sup><sub>lowETmiss</sub>-0j, (c,d) SR<sup>offWZ</sup><sub>lowETmiss</sub>-nj, (e,f) SR<sup>offWZ</sup><sub>highETmiss</sub>-0j, and (g,h) SR<sup>offWZ</sup><sub>highETmiss</sub>-nj regions of the offshell $W\!Z$ selection, after MC-to-data efficiency weights are applied.
The χ̃<sub>1</sub><sup>±</sup>/χ̃<sub>2</sub><sup>0</sup> (a,c,e,g) truth-level acceptances and (b,d,f,h) reconstruction efficiencies for the higgsino scenario, in the inclusive (a,b) SR<sup>offWZ</sup><sub>lowETmiss</sub>-0j, (c,d) SR<sup>offWZ</sup><sub>lowETmiss</sub>-nj, (e,f) SR<sup>offWZ</sup><sub>highETmiss</sub>-0j, and (g,h) SR<sup>offWZ</sup><sub>highETmiss</sub>-nj regions of the offshell $W\!Z$ selection, after MC-to-data efficiency weights are applied.
The χ̃<sub>1</sub><sup>±</sup>/χ̃<sub>2</sub><sup>0</sup> (a,c,e,g) truth-level acceptances and (b,d,f,h) reconstruction efficiencies for the higgsino scenario, in the inclusive (a,b) SR<sup>offWZ</sup><sub>lowETmiss</sub>-0j, (c,d) SR<sup>offWZ</sup><sub>lowETmiss</sub>-nj, (e,f) SR<sup>offWZ</sup><sub>highETmiss</sub>-0j, and (g,h) SR<sup>offWZ</sup><sub>highETmiss</sub>-nj regions of the offshell $W\!Z$ selection, after MC-to-data efficiency weights are applied.
The χ̃<sub>1</sub><sup>±</sup>/χ̃<sub>2</sub><sup>0</sup> (a,c,e,g) truth-level acceptances and (b,d,f,h) reconstruction efficiencies for the higgsino scenario, in the inclusive (a,b) SR<sup>offWZ</sup><sub>lowETmiss</sub>-0j, (c,d) SR<sup>offWZ</sup><sub>lowETmiss</sub>-nj, (e,f) SR<sup>offWZ</sup><sub>highETmiss</sub>-0j, and (g,h) SR<sup>offWZ</sup><sub>highETmiss</sub>-nj regions of the offshell $W\!Z$ selection, after MC-to-data efficiency weights are applied.
The χ̃<sub>1</sub><sup>±</sup>/χ̃<sub>2</sub><sup>0</sup> (a,c,e,g) truth-level acceptances and (b,d,f,h) reconstruction efficiencies for the higgsino scenario, in the inclusive (a,b) SR<sup>offWZ</sup><sub>lowETmiss</sub>-0j, (c,d) SR<sup>offWZ</sup><sub>lowETmiss</sub>-nj, (e,f) SR<sup>offWZ</sup><sub>highETmiss</sub>-0j, and (g,h) SR<sup>offWZ</sup><sub>highETmiss</sub>-nj regions of the offshell $W\!Z$ selection, after MC-to-data efficiency weights are applied.
The χ̃<sub>1</sub><sup>±</sup>/χ̃<sub>2</sub><sup>0</sup> (a,c,e,g) truth-level acceptances and (b,d,f,h) reconstruction efficiencies for the higgsino scenario, in the inclusive (a,b) SR<sup>offWZ</sup><sub>lowETmiss</sub>-0j, (c,d) SR<sup>offWZ</sup><sub>lowETmiss</sub>-nj, (e,f) SR<sup>offWZ</sup><sub>highETmiss</sub>-0j, and (g,h) SR<sup>offWZ</sup><sub>highETmiss</sub>-nj regions of the offshell $W\!Z$ selection, after MC-to-data efficiency weights are applied.
The χ̃<sub>1</sub><sup>±</sup>/χ̃<sub>2</sub><sup>0</sup> (a,c,e,g) truth-level acceptances and (b,d,f,h) reconstruction efficiencies for the higgsino scenario, in the inclusive (a,b) SR<sup>offWZ</sup><sub>lowETmiss</sub>-0j, (c,d) SR<sup>offWZ</sup><sub>lowETmiss</sub>-nj, (e,f) SR<sup>offWZ</sup><sub>highETmiss</sub>-0j, and (g,h) SR<sup>offWZ</sup><sub>highETmiss</sub>-nj regions of the offshell $W\!Z$ selection, after MC-to-data efficiency weights are applied.
Summary of onshell $W\!Z$ event selections for the m(χ̃<sub>2</sub><sup>0</sup>,χ̃<sub>1</sub><sup>0</sup>) = (300,200) GeV and m(χ̃<sub>2</sub><sup>0</sup>,χ̃<sub>1</sub><sup>0</sup>) = (600,100) GeV χ̃<sub>1</sub><sup>±</sup>/χ̃<sub>2</sub><sup>0</sup> signal points, for the wino/bino (+) interpretation. The yields are normalised to a luminosity of 139 fb<sup>-1</sup>, and MC-to-data efficiency weights from triggering and from the reconstruction and identification of individual physics objects are applied to the final yields in each signal region. After the initial selections, the table is split in row blocks per inclusive regions, and then further for each SR. The generator filters are discussed in detail in Section 4. The "3 isolated lepton selection" includes the common event selection as discussed in Section 5.
Summary of $W\!h$ event selections for the m(χ̃<sub>2</sub><sup>0</sup>,χ̃<sub>1</sub><sup>0</sup>) = (190,60) GeV χ̃<sub>1</sub><sup>±</sup>/χ̃<sub>2</sub><sup>0</sup> signal point, for the wino/bino (+) interpretation. The yields are normalised to a luminosity of 139 fb<sup>-1</sup>, and MC-to-data efficiency weights from triggering and from the reconstruction and identification of individual physics objects are applied to the final yields in each signal region. After the initial selections, the table is split in row blocks per inclusive regions, and then further for each SR. The generator filters are discussed in detail in Section 4. The "3 isolated lepton selection" includes the common event selection as discussed in Section 5.
Summary of offshell $W\!Z$ event selections for the m(χ̃<sub>2</sub><sup>0</sup>,χ̃<sub>1</sub><sup>0</sup>) = (250,235) GeV χ̃<sub>1</sub><sup>±</sup>/χ̃<sub>2</sub><sup>0</sup> signal point, for the wino/bino (+) interpretation. The yields are normalised to a luminosity of 139 fb<sup>-1</sup>, and MC-to-data efficiency weights from triggering and from the reconstruction and identification of individual physics objects are applied to the final yields in each signal region. After the initial selections, the table is split in row blocks for the inclusive SR<sup>offWZ</sup><sub>lowETmiss</sub>-0j, SR<sup>offWZ</sup><sub>lowETmiss</sub>-nj, SR<sup>offWZ</sup><sub>highETmiss</sub>-0j, and SR<sup>offWZ</sup><sub>highETmiss</sub>-nj regions, with the individual SR results in columns. The inclusive OR of regions a through g2 is given in the last column. Selection details per bin are indicated in bracketed blue as relevant, and the final yield for each SR is highlighted in bold green at the end of each block. The generator filters are discussed in detail in Section 4. The "3 isolated lepton selection" includes the common event selection as discussed in Section 5 and the initial SFOS lepton pair selection.
Summary of offshell $W\!Z$ event selections for the m(χ̃<sub>2</sub><sup>0</sup>,χ̃<sub>1</sub><sup>0</sup>) = (125,85) GeV χ̃<sub>1</sub><sup>±</sup>/χ̃<sub>2</sub><sup>0</sup> signal point, for the wino/bino (+) interpretation. The yields are normalised to a luminosity of 139 fb<sup>-1</sup>, and MC-to-data efficiency weights from triggering and from the reconstruction and identification of individual physics objects are applied to the final yields in each signal region. After the initial selections, the table is split in row blocks for the inclusive SR<sup>offWZ</sup><sub>lowETmiss</sub>-0j, SR<sup>offWZ</sup><sub>lowETmiss</sub>-nj, SR<sup>offWZ</sup><sub>highETmiss</sub>-0j, and SR<sup>offWZ</sup><sub>highETmiss</sub>-nj regions, with the individual SR results in columns. The inclusive OR of regions a through g2 is given in the last column. Selection details per bin are indicated in bracketed blue as relevant, and the final yield for each SR is highlighted in bold green at the end of each block. The generator filters are discussed in detail in Section 4. The "3 isolated lepton selection" includes the common event selection as discussed in Section 5 and the initial SFOS lepton pair selection.
Summary of offshell $W\!Z$ event selections for the m(χ̃<sub>2</sub><sup>0</sup>,χ̃<sub>1</sub><sup>0</sup>) = (250,170) GeV χ̃<sub>1</sub><sup>±</sup>/χ̃<sub>2</sub><sup>0</sup> signal point, for the wino/bino (+) interpretation. The yields are normalised to a luminosity of 139 fb<sup>-1</sup>, and MC-to-data efficiency weights from triggering and from the reconstruction and identification of individual physics objects are applied to the final yields in each signal region. After the initial selections, the table is split in row blocks for the inclusive SR<sup>offWZ</sup><sub>lowETmiss</sub>-0j, SR<sup>offWZ</sup><sub>lowETmiss</sub>-nj, SR<sup>offWZ</sup><sub>highETmiss</sub>-0j, and SR<sup>offWZ</sup><sub>highETmiss</sub>-nj regions, with the individual SR results in columns. The inclusive OR of regions a through g2 is given in the last column. Selection details per bin are indicated in bracketed blue as relevant, and the final yield for each SR is highlighted in bold green at the end of each block. The generator filters are discussed in detail in Section 4. The "3 isolated lepton selection" includes the common event selection as discussed in Section 5 and the initial SFOS lepton pair selection.
Summary of offshell $W\!Z$ event selections for the m(χ̃<sub>2</sub><sup>0</sup>,χ̃<sub>1</sub><sup>0</sup>) = (250,235) GeV χ̃<sub>1</sub><sup>±</sup>/χ̃<sub>2</sub><sup>0</sup> signal point, for the wino/bino (-) interpretation. The yields are normalised to a luminosity of 139 fb<sup>-1</sup>, and MC-to-data efficiency weights from triggering and from the reconstruction and identification of individual physics objects are applied to the final yields in each signal region. After the initial selections, the table is split in row blocks for the inclusive SR<sup>offWZ</sup><sub>lowETmiss</sub>-0j, SR<sup>offWZ</sup><sub>lowETmiss</sub>-nj, SR<sup>offWZ</sup><sub>highETmiss</sub>-0j, and SR<sup>offWZ</sup><sub>highETmiss</sub>-nj regions, with the individual SR results in columns. The inclusive OR of regions a through g2 is given in the last column. Selection details per bin are indicated in bracketed blue as relevant, and the final yield for each SR is highlighted in bold green at the end of each block. The generator filters are discussed in detail in Section 4. The "3 isolated lepton selection" includes the common event selection as discussed in Section 5 and the initial SFOS lepton pair selection.
Summary of offshell $W\!Z$ event selections for the m(χ̃<sub>2</sub><sup>0</sup>,χ̃<sub>1</sub><sup>0</sup>) = (125,85) GeV χ̃<sub>1</sub><sup>±</sup>/χ̃<sub>2</sub><sup>0</sup> signal point, for the wino/bino (-) interpretation. The yields are normalised to a luminosity of 139 fb<sup>-1</sup>, and MC-to-data efficiency weights from triggering and from the reconstruction and identification of individual physics objects are applied to the final yields in each signal region. After the initial selections, the table is split in row blocks for the inclusive SR<sup>offWZ</sup><sub>lowETmiss</sub>-0j, SR<sup>offWZ</sup><sub>lowETmiss</sub>-nj, SR<sup>offWZ</sup><sub>highETmiss</sub>-0j, and SR<sup>offWZ</sup><sub>highETmiss</sub>-nj regions, with the individual SR results in columns. The inclusive OR of regions a through g2 is given in the last column. Selection details per bin are indicated in bracketed blue as relevant, and the final yield for each SR is highlighted in bold green at the end of each block. The generator filters are discussed in detail in Section 4. The "3 isolated lepton selection" includes the common event selection as discussed in Section 5 and the initial SFOS lepton pair selection.
Summary of offshell $W\!Z$ event selections for the m(χ̃<sub>2</sub><sup>0</sup>,χ̃<sub>1</sub><sup>0</sup>) = (250,170) GeV χ̃<sub>1</sub><sup>±</sup>/χ̃<sub>2</sub><sup>0</sup> signal point, for the wino/bino (-) interpretation. The yields are normalised to a luminosity of 139 fb<sup>-1</sup>, and MC-to-data efficiency weights from triggering and from the reconstruction and identification of individual physics objects are applied to the final yields in each signal region. After the initial selections, the table is split in row blocks for the inclusive SR<sup>offWZ</sup><sub>lowETmiss</sub>-0j, SR<sup>offWZ</sup><sub>lowETmiss</sub>-nj, SR<sup>offWZ</sup><sub>highETmiss</sub>-0j, and SR<sup>offWZ</sup><sub>highETmiss</sub>-nj regions, with the individual SR results in columns. The inclusive OR of regions a through g2 is given in the last column. Selection details per bin are indicated in bracketed blue as relevant, and the final yield for each SR is highlighted in bold green at the end of each block. The generator filters are discussed in detail in Section 4. The "3 isolated lepton selection" includes the common event selection as discussed in Section 5 and the initial SFOS lepton pair selection.
Summary of offshell $W\!Z$ event selections for the m(χ̃<sub>2</sub><sup>0</sup>,χ̃<sub>1</sub><sup>0</sup>) = (120,100) GeV χ̃<sub>1</sub><sup>±</sup>/χ̃<sub>2</sub><sup>0</sup> signal point, for the higgsino interpretation. The yields are normalised to a luminosity of 139 fb<sup>-1</sup>, and MC-to-data efficiency weights from triggering and from the reconstruction and identification of individual physics objects are applied to the final yields in each signal region. After the initial selections, the table is split in row blocks for the inclusive SR<sup>offWZ</sup><sub>lowETmiss</sub>-0j, SR<sup>offWZ</sup><sub>lowETmiss</sub>-nj, SR<sup>offWZ</sup><sub>highETmiss</sub>-0j, and SR<sup>offWZ</sup><sub>highETmiss</sub>-nj regions, with the individual SR results in columns. The inclusive OR of regions a through g2 is given in the last column. Selection details per bin are indicated in bracketed blue as relevant, and the final yield for each SR is highlighted in bold green at the end of each block. The generator filters are discussed in detail in Section 4. The "3 isolated lepton selection" includes the common event selection as discussed in Section 5 and the initial SFOS lepton pair selection.
Summary of offshell $W\!Z$ event selections for the m(χ̃<sub>2</sub><sup>0</sup>,χ̃<sub>1</sub><sup>0</sup>) = (100,40) GeV χ̃<sub>1</sub><sup>±</sup>/χ̃<sub>2</sub><sup>0</sup> signal point, for the higgsino interpretation. The yields are normalised to a luminosity of 139 fb<sup>-1</sup>, and MC-to-data efficiency weights from triggering and from the reconstruction and identification of individual physics objects are applied to the final yields in each signal region. After the initial selections, the table is split in row blocks for the inclusive SR<sup>offWZ</sup><sub>lowETmiss</sub>-0j, SR<sup>offWZ</sup><sub>lowETmiss</sub>-nj, SR<sup>offWZ</sup><sub>highETmiss</sub>-0j, and SR<sup>offWZ</sup><sub>highETmiss</sub>-nj regions, with the individual SR results in columns. The inclusive OR of regions a through g2 is given in the last column. Selection details per bin are indicated in bracketed blue as relevant, and the final yield for each SR is highlighted in bold green at the end of each block. The generator filters are discussed in detail in Section 4. The "3 isolated lepton selection" includes the common event selection as discussed in Section 5 and the initial SFOS lepton pair selection.
Summary of offshell $W\!Z$ event selections for the m(χ̃<sub>2</sub><sup>0</sup>,χ̃<sub>1</sub><sup>0</sup>) = (185,125) GeV χ̃<sub>1</sub><sup>±</sup>/χ̃<sub>2</sub><sup>0</sup> signal point, for the higgsino interpretation. The yields are normalised to a luminosity of 139 fb<sup>-1</sup>, and MC-to-data efficiency weights from triggering and from the reconstruction and identification of individual physics objects are applied to the final yields in each signal region. After the initial selections, the table is split in row blocks for the inclusive SR<sup>offWZ</sup><sub>lowETmiss</sub>-0j, SR<sup>offWZ</sup><sub>lowETmiss</sub>-nj, SR<sup>offWZ</sup><sub>highETmiss</sub>-0j, and SR<sup>offWZ</sup><sub>highETmiss</sub>-nj regions, with the individual SR results in columns. The inclusive OR of regions a through g2 is given in the last column. Selection details per bin are indicated in bracketed blue as relevant, and the final yield for each SR is highlighted in bold green at the end of each block. The generator filters are discussed in detail in Section 4. The "3 isolated lepton selection" includes the common event selection as discussed in Section 5 and the initial SFOS lepton pair selection.
A search for dark matter in the form of strongly interacting massive particles (SIMPs) using the CMS detector at the LHC is presented. The SIMPs would be produced in pairs that manifest themselves as pairs of jets without tracks. The energy fraction of jets carried by charged particles is used as a key discriminator to suppress efficiently the large multijet background, and the remaining background is estimated directly from data. The search is performed using proton-proton collision data corresponding to an integrated luminosity of 16.1 fb$^{-1}$, collected with the CMS detector in 2016. No significant excess of events is observed above the expected background. For the simplified dark matter model under consideration, SIMPs with masses up to 100 GeV are excluded and further sensitivity is explored towards higher masses.
Distribution of the number of jets with pT > 30 GeV and |eta| < 5. The simulated QCD multijet background is compared with the signal expected for three different SIMP masses, with their cross sections scaled as indicated in the legend. The baseline selection is applied, except the events with three or more jets with pT > 30 GeV and |eta| < 5 are included.
Distribution of the value of ChF of the two leading jets. The simulated QCD multijet background is compared with the signal expected for three different SIMP masses, with their cross sections scaled as indicated in the legend. The baseline selection is applied.
The number of background events obtained from the 1- and 2-leg predictions using reconstructed objects in simulation, compared to the direct prediction from MC simulation, shown for various upper ChF thresholds. The bottom panel shows the ratios of the MC prediction to the 1-leg and the 2-leg background predictions.
The number of background events obtained from the 1- and 2-leg predictions derived from data, together with the direct observation in data, in bins in ChF, where either the leading or subleading jet has a ChF within the bin edges, and both have a ChF below the upper bin threshold. The bottom panel shows the ratios of the observation in data to the 1-leg and the 2-leg background predictions.
The expected and observed 95% CL upper limits on the production cross section for SIMPs with masses between 1 and 1000 GeV, with the assumption that the SIMP interaction in the detector can be approximated as neutron-like. The theoretical prediction of a simplified model incorporating this approximation and including a scalar mediator with couplings g_chi = -1 and g_q = 1 is also shown (red line). For masses above 100 GeV, where the modelling of the SIMP-nucleon interaction becomes more speculative, the obtained cross section upper limits are increasingly uncertain (shaded area).
A search for supersymmetry in events with four or more charged leptons (electrons, muons and $\tau$-leptons) is presented. The analysis uses a data sample corresponding to $139\,\mbox{fb\(^{-1}\)}$ of proton-proton collisions delivered by the Large Hadron Collider at $\sqrt{s}=13$ TeV and recorded by the ATLAS detector. Four-lepton signal regions with up to two hadronically decaying $\tau$-leptons are designed to target several supersymmetric models, while a general five-lepton signal region targets any new physics phenomena leading to a final state with five charged leptons. Data yields are consistent with Standard Model expectations and results are used to set upper limits on contributions from processes beyond the Standard Model. Exclusion limits are set at the 95% confidence level in simplified models of general gauge-mediated supersymmetry, excluding higgsino masses up to $540$ GeV. In $R$-parity-violating simplified models with decays of the lightest supersymmetric particle to charged leptons, lower limits of $1.6$ TeV, $1.2$ TeV, and $2.5$ TeV are placed on wino, slepton and gluino masses, respectively.
The $E_{\mathrm{T}}^{\mathrm{miss}}$ distribution in SR0-ZZ$^{\mathrm{loose}}$ and SR0-ZZ$^{\mathrm{tight}}$ for events passing the signal region requirements except the $E_{\mathrm{T}}^{\mathrm{miss}}$ requirement. Distributions for data, the estimated SM backgrounds after the background-only fit, and an example SUSY scenario are shown. "Other" is the sum of the $tWZ$, $t\bar{t}WW$, $t\bar{t} ZZ$, $t\bar{t} WH$, $t\bar{t} HH$, $t\bar{t} tW$, and $t\bar{t}t\bar{t}$ backgrounds. The last bin captures the overflow events. The lower panel shows the ratio of the observed data to the expected SM background yield in each bin. Both the statistical and systematic uncertainties in the SM background are included in the shaded band. The red arrows indicate the $E_{\mathrm{T}}^{\mathrm{miss}}$ selections in the signal regions.
The $E_{\mathrm{T}}^{\mathrm{miss}}$ distribution in SR0-ZZ$_{\mathrm{bveto}}^{\mathrm{loose}}$ and SR0-ZZ$_{\mathrm{bveto}}^{\mathrm{tight}}$ for events passing the signal region requirements except the $E_{\mathrm{T}}^{\mathrm{miss}}$ requirement. Distributions for data, the estimated SM backgrounds after the background-only fit, and an example SUSY scenario are shown. "Other" is the sum of the $tWZ$, $t\bar{t}WW$, $t\bar{t} ZZ$, $t\bar{t} WH$, $t\bar{t} HH$, $t\bar{t} tW$, and $t\bar{t}t\bar{t}$ backgrounds. The last bin captures the overflow events. The lower panel shows the ratio of the observed data to the expected SM background yield in each bin. Both the statistical and systematic uncertainties in the SM background are included in the shaded band. The red arrows indicate the $E_{\mathrm{T}}^{\mathrm{miss}}$ selections in the signal regions.
The $E_{\mathrm{T}}^{\mathrm{miss}}$ distribution in SR5L. Distributions for data, the estimated SM backgrounds after the background-only fit, and an example SUSY scenario are shown. "Other" is the sum of the $tWZ$, $t\bar{t}WW$, $t\bar{t} ZZ$, $t\bar{t} WH$, $t\bar{t} HH$, $t\bar{t} tW$, and $t\bar{t}t\bar{t}$ backgrounds. The last bin captures the overflow events. The lower panel shows the ratio of the observed data to the expected SM background yield in each bin. Both the statistical and systematic uncertainties in the SM background are included in the shaded band.
The $m_{\mathrm{eff}}$ distribution in SR0$_{\mathrm{bveto}}^{\mathrm{loose}}$ and SR0$_{\mathrm{bveto}}^{\mathrm{tight}}$ for events passing the signal region requirements except the $m_{\mathrm{eff}}$ requirement. Distributions for data, the estimated SM backgrounds after the background-only fit, and an example SUSY scenario are shown. "Other" is the sum of the $tWZ$, $t\bar{t}WW$, $t\bar{t} ZZ$, $t\bar{t} WH$, $t\bar{t} HH$, $t\bar{t} tW$, and $t\bar{t}t\bar{t}$ backgrounds. The last bin captures the overflow events. The lower panel shows the ratio of the observed data to the expected SM background yield in each bin. Both the statistical and systematic uncertainties in the SM background are included in the shaded band. The red arrows indicate the $m_{\mathrm{eff}}$ selections in the signal regions.
The $m_{\mathrm{eff}}$ distribution in SR1$_{\mathrm{bveto}}^{\mathrm{loose}}$ and SR1$_{\mathrm{bveto}}^{\mathrm{tight}}$ for events passing the signal region requirements except the $m_{\mathrm{eff}}$ requirement. Distributions for data, the estimated SM backgrounds after the background-only fit, and an example SUSY scenario are shown. "Other" is the sum of the $tWZ$, $t\bar{t}WW$, $t\bar{t} ZZ$, $t\bar{t} WH$, $t\bar{t} HH$, $t\bar{t} tW$, and $t\bar{t}t\bar{t}$ backgrounds. The last bin captures the overflow events. The lower panel shows the ratio of the observed data to the expected SM background yield in each bin. Both the statistical and systematic uncertainties in the SM background are included in the shaded band. The red arrows indicate the $m_{\mathrm{eff}}$ selections in the signal regions.
The $m_{\mathrm{eff}}$ distribution in SR2$_{\mathrm{bveto}}^{\mathrm{loose}}$ and SR2$_{\mathrm{bveto}}^{\mathrm{tight}}$ for events passing the signal region requirements except the $m_{\mathrm{eff}}$ requirement. Distributions for data, the estimated SM backgrounds after the background-only fit, and an example SUSY scenario are shown. "Other" is the sum of the $tWZ$, $t\bar{t}WW$, $t\bar{t} ZZ$, $t\bar{t} WH$, $t\bar{t} HH$, $t\bar{t} tW$, and $t\bar{t}t\bar{t}$ backgrounds. The last bin captures the overflow events. The lower panel shows the ratio of the observed data to the expected SM background yield in each bin. Both the statistical and systematic uncertainties in the SM background are included in the shaded band. The red arrows indicate the $m_{\mathrm{eff}}$ selections in the signal regions.
The $m_{\mathrm{eff}}$ distribution in SR0$_{\mathrm{breq}}$ for events passing the signal region requirements except the $m_{\mathrm{eff}}$ requirement. Distributions for data, the estimated SM backgrounds after the background-only fit, and an example SUSY scenario are shown. "Other" is the sum of the $tWZ$, $t\bar{t}WW$, $t\bar{t} ZZ$, $t\bar{t} WH$, $t\bar{t} HH$, $t\bar{t} tW$, and $t\bar{t}t\bar{t}$ backgrounds. The last bin captures the overflow events. The lower panel shows the ratio of the observed data to the expected SM background yield in each bin. Both the statistical and systematic uncertainties in the SM background are included in the shaded band. The red arrows indicate the $m_{\mathrm{eff}}$ selections in the signal regions.
The $m_{\mathrm{eff}}$ distribution in SR1$_{\mathrm{breq}}$ for events passing the signal region requirements except the $m_{\mathrm{eff}}$ requirement. Distributions for data, the estimated SM backgrounds after the background-only fit, and an example SUSY scenario are shown. "Other" is the sum of the $tWZ$, $t\bar{t}WW$, $t\bar{t} ZZ$, $t\bar{t} WH$, $t\bar{t} HH$, $t\bar{t} tW$, and $t\bar{t}t\bar{t}$ backgrounds. The last bin captures the overflow events. The lower panel shows the ratio of the observed data to the expected SM background yield in each bin. Both the statistical and systematic uncertainties in the SM background are included in the shaded band. The red arrows indicate the $m_{\mathrm{eff}}$ selections in the signal regions.
The $m_{\mathrm{eff}}$ distribution in SR2$_{\mathrm{breq}}$ for events passing the signal region requirements except the $m_{\mathrm{eff}}$ requirement. Distributions for data, the estimated SM backgrounds after the background-only fit, and an example SUSY scenario are shown. "Other" is the sum of the $tWZ$, $t\bar{t}WW$, $t\bar{t} ZZ$, $t\bar{t} WH$, $t\bar{t} HH$, $t\bar{t} tW$, and $t\bar{t}t\bar{t}$ backgrounds. The last bin captures the overflow events. The lower panel shows the ratio of the observed data to the expected SM background yield in each bin. Both the statistical and systematic uncertainties in the SM background are included in the shaded band. The red arrows indicate the $m_{\mathrm{eff}}$ selections in the signal regions.
Expected 95% CL exclusion limits on the higgsino GGM models. The limits are set using the statistical combination of disjoint signal regions. Where two (or more) signal regions overlap, the signal region contributing its observed $\mathrm{CL}_{\mathrm{s}}$ value to the combination is the one with the better (best) expected $\mathrm{CL}_{\mathrm{s}}$ value.
$+1\sigma$ expected 95% CL exclusion limits on the higgsino GGM models. The limits are set using the statistical combination of disjoint signal regions. Where two (or more) signal regions overlap, the signal region contributing its observed $\mathrm{CL}_{\mathrm{s}}$ value to the combination is the one with the better (best) expected $\mathrm{CL}_{\mathrm{s}}$ value.
$-1\sigma$ expected 95% CL exclusion limits on the higgsino GGM models. The limits are set using the statistical combination of disjoint signal regions. Where two (or more) signal regions overlap, the signal region contributing its observed $\mathrm{CL}_{\mathrm{s}}$ value to the combination is the one with the better (best) expected $\mathrm{CL}_{\mathrm{s}}$ value.
Observed 95% CL exclusion limits on the higgsino GGM models. The limits are set using the statistical combination of disjoint signal regions. Where two (or more) signal regions overlap, the signal region contributing its observed $\mathrm{CL}_{\mathrm{s}}$ value to the combination is the one with the better (best) expected $\mathrm{CL}_{\mathrm{s}}$ value.
$+1\sigma$ observed 95% CL exclusion limits on the higgsino GGM models. The limits are set using the statistical combination of disjoint signal regions. Where two (or more) signal regions overlap, the signal region contributing its observed $\mathrm{CL}_{\mathrm{s}}$ value to the combination is the one with the better (best) expected $\mathrm{CL}_{\mathrm{s}}$ value.
$-1\sigma$ observed 95% CL exclusion limits on the higgsino GGM models. The limits are set using the statistical combination of disjoint signal regions. Where two (or more) signal regions overlap, the signal region contributing its observed $\mathrm{CL}_{\mathrm{s}}$ value to the combination is the one with the better (best) expected $\mathrm{CL}_{\mathrm{s}}$ value.
Expected 95% CL exclusion limits on wino NLSP pair production with RPV LSP decays via $\lambda_{12k}$, where $k \in{1,2}$. The limits are set using the statistical combination of disjoint signal regions. Where two (or more) signal regions overlap, the signal region contributing its observed $\mathrm{CL}_{\mathrm{s}}$ value to the combination is the one with the better (best) expected $\mathrm{CL}_{\mathrm{s}}$ value.
$+1\sigma$ expected 95% CL exclusion limits on wino NLSP pair production with RPV LSP decays via $\lambda_{12k}$, where $k \in{1,2}$. The limits are set using the statistical combination of disjoint signal regions. Where two (or more) signal regions overlap, the signal region contributing its observed $\mathrm{CL}_{\mathrm{s}}$ value to the combination is the one with the better (best) expected $\mathrm{CL}_{\mathrm{s}}$ value.
$-1\sigma$ expected 95% CL exclusion limits on wino NLSP pair production with RPV LSP decays via $\lambda_{12k}$, where $k \in{1,2}$. The limits are set using the statistical combination of disjoint signal regions. Where two (or more) signal regions overlap, the signal region contributing its observed $\mathrm{CL}_{\mathrm{s}}$ value to the combination is the one with the better (best) expected $\mathrm{CL}_{\mathrm{s}}$ value.
Observed 95% CL exclusion limits on wino NLSP pair production with RPV LSP decays via $\lambda_{12k}$, where $k \in{1,2}$. The limits are set using the statistical combination of disjoint signal regions. Where two (or more) signal regions overlap, the signal region contributing its observed $\mathrm{CL}_{\mathrm{s}}$ value to the combination is the one with the better (best) expected $\mathrm{CL}_{\mathrm{s}}$ value.
$+1\sigma$ bserved 95% CL exclusion limits on wino NLSP pair production with RPV LSP decays via $\lambda_{12k}$, where $k \in{1,2}$. The limits are set using the statistical combination of disjoint signal regions. Where two (or more) signal regions overlap, the signal region contributing its observed $\mathrm{CL}_{\mathrm{s}}$ value to the combination is the one with the better (best) expected $\mathrm{CL}_{\mathrm{s}}$ value.
$-1\sigma$ observed 95% CL exclusion limits on wino NLSP pair production with RPV LSP decays via $\lambda_{12k}$, where $k \in{1,2}$. The limits are set using the statistical combination of disjoint signal regions. Where two (or more) signal regions overlap, the signal region contributing its observed $\mathrm{CL}_{\mathrm{s}}$ value to the combination is the one with the better (best) expected $\mathrm{CL}_{\mathrm{s}}$ value.
Expected 95% CL exclusion limits on wino NLSP pair production with RPV LSP decays via $\lambda_{i33}$, where $i \in{1,2}$. The limits are set using the statistical combination of disjoint signal regions. Where two (or more) signal regions overlap, the signal region contributing its observed $\mathrm{CL}_{\mathrm{s}}$ value to the combination is the one with the better (best) expected $\mathrm{CL}_{\mathrm{s}}$ value.
$+1\sigma$ expected 95% CL exclusion limits on wino NLSP pair production with RPV LSP decays via $\lambda_{i33}$, where $i \in{1,2}$. The limits are set using the statistical combination of disjoint signal regions. Where two (or more) signal regions overlap, the signal region contributing its observed $\mathrm{CL}_{\mathrm{s}}$ value to the combination is the one with the better (best) expected $\mathrm{CL}_{\mathrm{s}}$ value.
$-1\sigma$ expected 95% CL exclusion limits on wino NLSP pair production with RPV LSP decays via $\lambda_{i33}$, where $i \in{1,2}$. The limits are set using the statistical combination of disjoint signal regions. Where two (or more) signal regions overlap, the signal region contributing its observed $\mathrm{CL}_{\mathrm{s}}$ value to the combination is the one with the better (best) expected $\mathrm{CL}_{\mathrm{s}}$ value.
Observed 95% CL exclusion limits on wino NLSP pair production with RPV LSP decays via $\lambda_{i33}$, where $i \in{1,2}$. The limits are set using the statistical combination of disjoint signal regions. Where two (or more) signal regions overlap, the signal region contributing its observed $\mathrm{CL}_{\mathrm{s}}$ value to the combination is the one with the better (best) expected $\mathrm{CL}_{\mathrm{s}}$ value.
$+1\sigma$ observed 95% CL exclusion limits on wino NLSP pair production with RPV LSP decays via $\lambda_{i33}$, where $i \in{1,2}$. The limits are set using the statistical combination of disjoint signal regions. Where two (or more) signal regions overlap, the signal region contributing its observed $\mathrm{CL}_{\mathrm{s}}$ value to the combination is the one with the better (best) expected $\mathrm{CL}_{\mathrm{s}}$ value.
$-1\sigma$ observed 95% CL exclusion limits on wino NLSP pair production with RPV LSP decays via $\lambda_{i33}$, where $i \in{1,2}$. The limits are set using the statistical combination of disjoint signal regions. Where two (or more) signal regions overlap, the signal region contributing its observed $\mathrm{CL}_{\mathrm{s}}$ value to the combination is the one with the better (best) expected $\mathrm{CL}_{\mathrm{s}}$ value.
Expected 95% CL exclusion limits on slepton/sneutrino NLSP pair production with RPV LSP decays via $\lambda_{12k}$, where $k \in{1,2}$. The limits are set using the statistical combination of disjoint signal regions. Where two (or more) signal regions overlap, the signal region contributing its observed $\mathrm{CL}_{\mathrm{s}}$ value to the combination is the one with the better (best) expected $\mathrm{CL}_{\mathrm{s}}$ value.
$+1\sigma$ expected 95% CL exclusion limits on slepton/sneutrino NLSP pair production with RPV LSP decays via $\lambda_{12k}$, where $k \in{1,2}$. The limits are set using the statistical combination of disjoint signal regions. Where two (or more) signal regions overlap, the signal region contributing its observed $\mathrm{CL}_{\mathrm{s}}$ value to the combination is the one with the better (best) expected $\mathrm{CL}_{\mathrm{s}}$ value.
$-1\sigma$ expected 95% CL exclusion limits on slepton/sneutrino NLSP pair production with RPV LSP decays via $\lambda_{12k}$, where $k \in{1,2}$. The limits are set using the statistical combination of disjoint signal regions. Where two (or more) signal regions overlap, the signal region contributing its observed $\mathrm{CL}_{\mathrm{s}}$ value to the combination is the one with the better (best) expected $\mathrm{CL}_{\mathrm{s}}$ value.
Observed 95% CL exclusion limits on slepton/sneutrino NLSP pair production with RPV LSP decays via $\lambda_{12k}$, where $k \in{1,2}$. The limits are set using the statistical combination of disjoint signal regions. Where two (or more) signal regions overlap, the signal region contributing its observed $\mathrm{CL}_{\mathrm{s}}$ value to the combination is the one with the better (best) expected $\mathrm{CL}_{\mathrm{s}}$ value.
$+1\sigma$ observed 95% CL exclusion limits on slepton/sneutrino NLSP pair production with RPV LSP decays via $\lambda_{12k}$, where $k \in{1,2}$. The limits are set using the statistical combination of disjoint signal regions. Where two (or more) signal regions overlap, the signal region contributing its observed $\mathrm{CL}_{\mathrm{s}}$ value to the combination is the one with the better (best) expected $\mathrm{CL}_{\mathrm{s}}$ value.
$-1\sigma$ observed 95% CL exclusion limits on slepton/sneutrino NLSP pair production with RPV LSP decays via $\lambda_{12k}$, where $k \in{1,2}$. The limits are set using the statistical combination of disjoint signal regions. Where two (or more) signal regions overlap, the signal region contributing its observed $\mathrm{CL}_{\mathrm{s}}$ value to the combination is the one with the better (best) expected $\mathrm{CL}_{\mathrm{s}}$ value.
Expected 95% CL exclusion limits on slepton/sneutrino NLSP pair production with RPV LSP decays via $\lambda_{i33}$, where $i \in{1,2}$. The limits are set using the statistical combination of disjoint signal regions. Where two (or more) signal regions overlap, the signal region contributing its observed $\mathrm{CL}_{\mathrm{s}}$ value to the combination is the one with the better (best) expected $\mathrm{CL}_{\mathrm{s}}$ value.
$+1\sigma$ expected 95% CL exclusion limits on slepton/sneutrino NLSP pair production with RPV LSP decays via $\lambda_{i33}$, where $i \in{1,2}$. The limits are set using the statistical combination of disjoint signal regions. Where two (or more) signal regions overlap, the signal region contributing its observed $\mathrm{CL}_{\mathrm{s}}$ value to the combination is the one with the better (best) expected $\mathrm{CL}_{\mathrm{s}}$ value.
$-1\sigma$ expected 95% CL exclusion limits on slepton/sneutrino NLSP pair production with RPV LSP decays via $\lambda_{i33}$, where $i \in{1,2}$. The limits are set using the statistical combination of disjoint signal regions. Where two (or more) signal regions overlap, the signal region contributing its observed $\mathrm{CL}_{\mathrm{s}}$ value to the combination is the one with the better (best) expected $\mathrm{CL}_{\mathrm{s}}$ value.
Observed 95% CL exclusion limits on slepton/sneutrino NLSP pair production with RPV LSP decays via $\lambda_{i33}$, where $i \in{1,2}$. The limits are set using the statistical combination of disjoint signal regions. Where two (or more) signal regions overlap, the signal region contributing its observed $\mathrm{CL}_{\mathrm{s}}$ value to the combination is the one with the better (best) expected $\mathrm{CL}_{\mathrm{s}}$ value.
$+1\sigma$ observed 95% CL exclusion limits on slepton/sneutrino NLSP pair production with RPV LSP decays via $\lambda_{i33}$, where $i \in{1,2}$. The limits are set using the statistical combination of disjoint signal regions. Where two (or more) signal regions overlap, the signal region contributing its observed $\mathrm{CL}_{\mathrm{s}}$ value to the combination is the one with the better (best) expected $\mathrm{CL}_{\mathrm{s}}$ value.
$-1\sigma$ observed 95% CL exclusion limits on slepton/sneutrino NLSP pair production with RPV LSP decays via $\lambda_{i33}$, where $i \in{1,2}$. The limits are set using the statistical combination of disjoint signal regions. Where two (or more) signal regions overlap, the signal region contributing its observed $\mathrm{CL}_{\mathrm{s}}$ value to the combination is the one with the better (best) expected $\mathrm{CL}_{\mathrm{s}}$ value.
Expected 95% CL exclusion limits on gluino NLSP pair production with RPV LSP decays via $\lambda_{12k}$, where $k \in{1,2}$. The limits are set using the statistical combination of disjoint signal regions. Where two (or more) signal regions overlap, the signal region contributing its observed $\mathrm{CL}_{\mathrm{s}}$ value to the combination is the one with the better (best) expected $\mathrm{CL}_{\mathrm{s}}$ value.
$+1\sigma$ expected 95% CL exclusion limits on gluino NLSP pair production with RPV LSP decays via $\lambda_{12k}$, where $k \in{1,2}$. The limits are set using the statistical combination of disjoint signal regions. Where two (or more) signal regions overlap, the signal region contributing its observed $\mathrm{CL}_{\mathrm{s}}$ value to the combination is the one with the better (best) expected $\mathrm{CL}_{\mathrm{s}}$ value.
$-1\sigma$ expected 95% CL exclusion limits on gluino NLSP pair production with RPV LSP decays via $\lambda_{12k}$, where $k \in{1,2}$. The limits are set using the statistical combination of disjoint signal regions. Where two (or more) signal regions overlap, the signal region contributing its observed $\mathrm{CL}_{\mathrm{s}}$ value to the combination is the one with the better (best) expected $\mathrm{CL}_{\mathrm{s}}$ value.
Observed 95% CL exclusion limits on gluino NLSP pair production with RPV LSP decays via $\lambda_{12k}$, where $k \in{1,2}$. The limits are set using the statistical combination of disjoint signal regions. Where two (or more) signal regions overlap, the signal region contributing its observed $\mathrm{CL}_{\mathrm{s}}$ value to the combination is the one with the better (best) expected $\mathrm{CL}_{\mathrm{s}}$ value.
$+1\sigma$ observed 95% CL exclusion limits on gluino NLSP pair production with RPV LSP decays via $\lambda_{12k}$, where $k \in{1,2}$. The limits are set using the statistical combination of disjoint signal regions. Where two (or more) signal regions overlap, the signal region contributing its observed $\mathrm{CL}_{\mathrm{s}}$ value to the combination is the one with the better (best) expected $\mathrm{CL}_{\mathrm{s}}$ value.
$-1\sigma$ observed 95% CL exclusion limits on gluino NLSP pair production with RPV LSP decays via $\lambda_{12k}$, where $k \in{1,2}$. The limits are set using the statistical combination of disjoint signal regions. Where two (or more) signal regions overlap, the signal region contributing its observed $\mathrm{CL}_{\mathrm{s}}$ value to the combination is the one with the better (best) expected $\mathrm{CL}_{\mathrm{s}}$ value.
Expected 95% CL exclusion limits on gluino NLSP pair production with RPV LSP decays via $\lambda_{i33}$, where $i \in{1,2}$. The limits are set using the statistical combination of disjoint signal regions. Where two (or more) signal regions overlap, the signal region contributing its observed $\mathrm{CL}_{\mathrm{s}}$ value to the combination is the one with the better (best) expected $\mathrm{CL}_{\mathrm{s}}$ value.
$+1\sigma$ expected 95% CL exclusion limits on gluino NLSP pair production with RPV LSP decays via $\lambda_{i33}$, where $i \in{1,2}$. The limits are set using the statistical combination of disjoint signal regions. Where two (or more) signal regions overlap, the signal region contributing its observed $\mathrm{CL}_{\mathrm{s}}$ value to the combination is the one with the better (best) expected $\mathrm{CL}_{\mathrm{s}}$ value.
$-1\sigma$ expected 95% CL exclusion limits on gluino NLSP pair production with RPV LSP decays via $\lambda_{i33}$, where $i \in{1,2}$. The limits are set using the statistical combination of disjoint signal regions. Where two (or more) signal regions overlap, the signal region contributing its observed $\mathrm{CL}_{\mathrm{s}}$ value to the combination is the one with the better (best) expected $\mathrm{CL}_{\mathrm{s}}$ value.
Observed 95% CL exclusion limits on gluino NLSP pair production with RPV LSP decays via $\lambda_{i33}$, where $i \in{1,2}$. The limits are set using the statistical combination of disjoint signal regions. Where two (or more) signal regions overlap, the signal region contributing its observed $\mathrm{CL}_{\mathrm{s}}$ value to the combination is the one with the better (best) expected $\mathrm{CL}_{\mathrm{s}}$ value.
$+1\sigma$ observed 95% CL exclusion limits on gluino NLSP pair production with RPV LSP decays via $\lambda_{i33}$, where $i \in{1,2}$. The limits are set using the statistical combination of disjoint signal regions. Where two (or more) signal regions overlap, the signal region contributing its observed $\mathrm{CL}_{\mathrm{s}}$ value to the combination is the one with the better (best) expected $\mathrm{CL}_{\mathrm{s}}$ value.
$-1\sigma$ observed 95% CL exclusion limits on gluino NLSP pair production with RPV LSP decays via $\lambda_{i33}$, where $i \in{1,2}$. The limits are set using the statistical combination of disjoint signal regions. Where two (or more) signal regions overlap, the signal region contributing its observed $\mathrm{CL}_{\mathrm{s}}$ value to the combination is the one with the better (best) expected $\mathrm{CL}_{\mathrm{s}}$ value.
Observed upper limit on the signal cross section in fb for the wino NLSP models with RPV LSP decays via $\lambda_{12k}$ where $k \in{1,2}$. The interpolation between signal scenarios studied is included for illustration purposes only and may be subject to interpolation effects in sparsely populated areas.
Observed upper limit on the signal cross section in fb for the wino NLSP models with RPV LSP decays via $\lambda_{i33}$ where $i \in{1,2}$. The interpolation between signal scenarios studied is included for illustration purposes only and may be subject to interpolation effects in sparsely populated areas.
Observed upper limit on the signal cross section in fb for the slepton/sneutrino NLSP models with RPV LSP decays via $\lambda_{12k}$ where $k \in{1,2}$. The interpolation between signal scenarios studied is included for illustration purposes only and may be subject to interpolation effects in sparsely populated areas.
Observed upper limit on the signal cross section in fb for the slepton/sneutrino NLSP models with RPV LSP decays via $\lambda_{i33}$ where $i \in{1,2}$. The interpolation between signal scenarios studied is included for illustration purposes only and may be subject to interpolation effects in sparsely populated areas.
Observed upper limit on the signal cross section in fb for the gluino NLSP models with RPV LSP decays via $\lambda_{12k}$ where $k \in{1,2}$. The interpolation between signal scenarios studied is included for illustration purposes only and may be subject to interpolation effects in sparsely populated areas.
Observed upper limit on the signal cross section in fb for the gluino NLSP models with RPV LSP decays via $\lambda_{i33}$ where $i \in{1,2}$. The interpolation between signal scenarios studied is included for illustration purposes only and may be subject to interpolation effects in sparsely populated areas.
Observed upper limit on the signal cross section in fb for the higgsino GGM models. The interpolation between signal scenarios studied is included for illustration purposes only and may be subject to interpolation effects in sparsely populated areas.
Best expected SR for the wino NLSP models with RPV LSP decays via $\lambda_{12k}$ where $k \in{1,2}$. A value of 1 corresponds to SR0$_{\mathrm{bveto}}^{\mathrm{loose}}$SR1$_{\mathrm{bveto}}^{\mathrm{loose}}$SR2$_{\mathrm{bveto}}^{\mathrm{loose}}$, 2 corresponds to SR0$_{\mathrm{bveto}}^{\mathrm{loose}}$SR1$_{\mathrm{bveto}}^{\mathrm{loose}}$SR2$_{\mathrm{bveto}}^{\mathrm{tight}}$, 3 corresponds to SR0$_{\mathrm{bveto}}^{\mathrm{loose}}$SR1$_{\mathrm{bveto}}^{\mathrm{tight}}$SR2$_{\mathrm{bveto}}^{\mathrm{loose}}$, 4 corresponds to SR0$_{\mathrm{bveto}}^{\mathrm{loose}}$SR1$_{\mathrm{bveto}}^{\mathrm{tight}}$SR2$_{\mathrm{bveto}}^{\mathrm{tight}}$, and 5 corresponds to SR0$_{\mathrm{bveto}}^{\mathrm{tight}}$SR1$_{\mathrm{bveto}}^{\mathrm{tight}}$SR2$_{\mathrm{bveto}}^{\mathrm{tight}}$.
Best expected SR for the wino NLSP models with RPV LSP decays via $\lambda_{i33}$ where $i \in{1,2}$. A value of 1 corresponds to SR0$_{\mathrm{bveto}}^{\mathrm{loose}}$SR1$_{\mathrm{bveto}}^{\mathrm{loose}}$SR2$_{\mathrm{bveto}}^{\mathrm{loose}}$, 2 corresponds to SR0$_{\mathrm{bveto}}^{\mathrm{loose}}$SR1$_{\mathrm{bveto}}^{\mathrm{loose}}$SR2$_{\mathrm{bveto}}^{\mathrm{tight}}$, 3 corresponds to SR0$_{\mathrm{bveto}}^{\mathrm{loose}}$SR1$_{\mathrm{bveto}}^{\mathrm{tight}}$SR2$_{\mathrm{bveto}}^{\mathrm{loose}}$, 4 corresponds to SR0$_{\mathrm{bveto}}^{\mathrm{loose}}$SR1$_{\mathrm{bveto}}^{\mathrm{tight}}$SR2$_{\mathrm{bveto}}^{\mathrm{tight}}$, and 5 corresponds to SR0$_{\mathrm{bveto}}^{\mathrm{tight}}$SR1$_{\mathrm{bveto}}^{\mathrm{tight}}$SR2$_{\mathrm{bveto}}^{\mathrm{tight}}$.
Best expected SR for the slepton/sneutrino NLSP models with RPV LSP decays via $\lambda_{12k}$ where $k \in{1,2}$. A value of 1 corresponds to SR0$_{\mathrm{bveto}}^{\mathrm{loose}}$SR1$_{\mathrm{bveto}}^{\mathrm{loose}}$SR2$_{\mathrm{bveto}}^{\mathrm{loose}}$, 2 corresponds to SR0$_{\mathrm{bveto}}^{\mathrm{loose}}$SR1$_{\mathrm{bveto}}^{\mathrm{loose}}$SR2$_{\mathrm{bveto}}^{\mathrm{tight}}$, 3 corresponds to SR0$_{\mathrm{bveto}}^{\mathrm{loose}}$SR1$_{\mathrm{bveto}}^{\mathrm{tight}}$SR2$_{\mathrm{bveto}}^{\mathrm{loose}}$, 4 corresponds to SR0$_{\mathrm{bveto}}^{\mathrm{loose}}$SR1$_{\mathrm{bveto}}^{\mathrm{tight}}$SR2$_{\mathrm{bveto}}^{\mathrm{tight}}$, and 5 corresponds to SR0$_{\mathrm{bveto}}^{\mathrm{tight}}$SR1$_{\mathrm{bveto}}^{\mathrm{tight}}$SR2$_{\mathrm{bveto}}^{\mathrm{tight}}$.
Best expected SR for the slepton/sneutrino NLSP models with RPV LSP decays via $\lambda_{i33}$ where $i \in{1,2}$. A value of 1 corresponds to SR0$_{\mathrm{bveto}}^{\mathrm{loose}}$SR1$_{\mathrm{bveto}}^{\mathrm{loose}}$SR2$_{\mathrm{bveto}}^{\mathrm{loose}}$, 2 corresponds to SR0$_{\mathrm{bveto}}^{\mathrm{loose}}$SR1$_{\mathrm{bveto}}^{\mathrm{loose}}$SR2$_{\mathrm{bveto}}^{\mathrm{tight}}$, 3 corresponds to SR0$_{\mathrm{bveto}}^{\mathrm{loose}}$SR1$_{\mathrm{bveto}}^{\mathrm{tight}}$SR2$_{\mathrm{bveto}}^{\mathrm{loose}}$, 4 corresponds to SR0$_{\mathrm{bveto}}^{\mathrm{loose}}$SR1$_{\mathrm{bveto}}^{\mathrm{tight}}$SR2$_{\mathrm{bveto}}^{\mathrm{tight}}$, and 5 corresponds to SR0$_{\mathrm{bveto}}^{\mathrm{tight}}$SR1$_{\mathrm{bveto}}^{\mathrm{tight}}$SR2$_{\mathrm{bveto}}^{\mathrm{tight}}$.
Best expected SR for the gluino NLSP models with RPV LSP decays via $\lambda_{12k}$ where $k \in{1,2}$. A value of 1 corresponds to SR0$_{\mathrm{bveto}}^{\mathrm{loose}}$SR1$_{\mathrm{bveto}}^{\mathrm{loose}}$SR2$_{\mathrm{bveto}}^{\mathrm{loose}}$, 2 corresponds to SR0$_{\mathrm{bveto}}^{\mathrm{loose}}$SR1$_{\mathrm{bveto}}^{\mathrm{loose}}$SR2$_{\mathrm{bveto}}^{\mathrm{tight}}$, 3 corresponds to SR0$_{\mathrm{bveto}}^{\mathrm{loose}}$SR1$_{\mathrm{bveto}}^{\mathrm{tight}}$SR2$_{\mathrm{bveto}}^{\mathrm{loose}}$, 4 corresponds to SR0$_{\mathrm{bveto}}^{\mathrm{loose}}$SR1$_{\mathrm{bveto}}^{\mathrm{tight}}$SR2$_{\mathrm{bveto}}^{\mathrm{tight}}$, and 5 corresponds to SR0$_{\mathrm{bveto}}^{\mathrm{tight}}$SR1$_{\mathrm{bveto}}^{\mathrm{tight}}$SR2$_{\mathrm{bveto}}^{\mathrm{tight}}$.
Best expected SR for the gluino NLSP models with RPV LSP decays via $\lambda_{i33}$ where $i \in{1,2}$. A value of 1 corresponds to SR0$_{\mathrm{bveto}}^{\mathrm{loose}}$SR1$_{\mathrm{bveto}}^{\mathrm{loose}}$SR2$_{\mathrm{bveto}}^{\mathrm{loose}}$, 2 corresponds to SR0$_{\mathrm{bveto}}^{\mathrm{loose}}$SR1$_{\mathrm{bveto}}^{\mathrm{loose}}$SR2$_{\mathrm{bveto}}^{\mathrm{tight}}$, 3 corresponds to SR0$_{\mathrm{bveto}}^{\mathrm{loose}}$SR1$_{\mathrm{bveto}}^{\mathrm{tight}}$SR2$_{\mathrm{bveto}}^{\mathrm{loose}}$, 4 corresponds to SR0$_{\mathrm{bveto}}^{\mathrm{loose}}$SR1$_{\mathrm{bveto}}^{\mathrm{tight}}$SR2$_{\mathrm{bveto}}^{\mathrm{tight}}$, and 5 corresponds to SR0$_{\mathrm{bveto}}^{\mathrm{tight}}$SR1$_{\mathrm{bveto}}^{\mathrm{tight}}$SR2$_{\mathrm{bveto}}^{\mathrm{tight}}$.
Best expected SR for the higgsino GGM models. A value of 6 corresponds to SR0-ZZ$^{\mathrm{loose}}$, 7 corresponds to SR0-ZZ$^{\mathrm{tight}}$, 8 corresponds to SR0-ZZ$^{\mathrm{loose}}_{\mathrm{bveto}}$, and 9 corresponds to SR0-ZZ$^{\mathrm{tight}}_{\mathrm{bveto}}$.
Acceptance across the wino NLSP $\lambda_{12k}\neq 0$ models for SR0$_{\mathrm{bveto}}^{\mathrm{loose}}$. The interpolation between signal scenarios studied is included for illustration purposes only and may be subject to interpolation effects in sparsely populated areas.
Efficiency across the wino NLSP $\lambda_{12k}\neq 0$ models for SR0$_{\mathrm{bveto}}^{\mathrm{loose}}$. The interpolation between signal scenarios studied is included for illustration purposes only and may be subject to interpolation effects in sparsely populated areas.
Acceptance across the wino NLSP $\lambda_{12k}\neq 0$ models for SR0$_{\mathrm{bveto}}^{\mathrm{tight}}$. The interpolation between signal scenarios studied is included for illustration purposes only and may be subject to interpolation effects in sparsely populated areas.
Efficiency across the wino NLSP $\lambda_{12k}\neq 0$ models for SR0$_{\mathrm{bveto}}^{\mathrm{tight}}$. The interpolation between signal scenarios studied is included for illustration purposes only and may be subject to interpolation effects in sparsely populated areas.
Acceptance across the wino NLSP $\lambda_{12k}\neq 0$ models for SR0$_{\mathrm{breq}}$. The interpolation between signal scenarios studied is included for illustration purposes only and may be subject to interpolation effects in sparsely populated areas.
Efficiency across the wino NLSP $\lambda_{12k}\neq 0$ models for SR0$_{\mathrm{breq}}$. The interpolation between signal scenarios studied is included for illustration purposes only and may be subject to interpolation effects in sparsely populated areas.
Acceptance across the wino NLSP $\lambda_{i33}\neq 0$ models for SR1$_{\mathrm{bveto}}^{\mathrm{loose}}$. The interpolation between signal scenarios studied is included for illustration purposes only and may be subject to interpolation effects in sparsely populated areas.
Efficiency across the wino NLSP $\lambda_{i33}\neq 0$ models for SR1$_{\mathrm{bveto}}^{\mathrm{loose}}$. The interpolation between signal scenarios studied is included for illustration purposes only and may be subject to interpolation effects in sparsely populated areas.
Acceptance across the wino NLSP $\lambda_{i33}\neq 0$ models for SR1$_{\mathrm{bveto}}^{\mathrm{tight}}$. The interpolation between signal scenarios studied is included for illustration purposes only and may be subject to interpolation effects in sparsely populated areas.
Efficiency across the wino NLSP $\lambda_{i33}\neq 0$ models for SR1$_{\mathrm{bveto}}^{\mathrm{tight}}$. The interpolation between signal scenarios studied is included for illustration purposes only and may be subject to interpolation effects in sparsely populated areas.
Acceptance across the wino NLSP $\lambda_{i33}\neq 0$ models for SR1$_{\mathrm{breq}}$. The interpolation between signal scenarios studied is included for illustration purposes only and may be subject to interpolation effects in sparsely populated areas.
Efficiency across the wino NLSP $\lambda_{i33}\neq 0$ models for SR1$_{\mathrm{breq}}$. The interpolation between signal scenarios studied is included for illustration purposes only and may be subject to interpolation effects in sparsely populated areas.
Acceptance across the wino NLSP $\lambda_{i33}\neq 0$ models for SR2$_{\mathrm{bveto}}^{\mathrm{loose}}$. The interpolation between signal scenarios studied is included for illustration purposes only and may be subject to interpolation effects in sparsely populated areas.
Efficiency across the wino NLSP $\lambda_{i33}\neq 0$ models for SR2$_{\mathrm{bveto}}^{\mathrm{loose}}$. The interpolation between signal scenarios studied is included for illustration purposes only and may be subject to interpolation effects in sparsely populated areas.
Acceptance across the wino NLSP $\lambda_{i33}\neq 0$ models for SR2$_{\mathrm{bveto}}^{\mathrm{tight}}$. The interpolation between signal scenarios studied is included for illustration purposes only and may be subject to interpolation effects in sparsely populated areas.
Efficiency across the wino NLSP $\lambda_{i33}\neq 0$ models for SR2$_{\mathrm{bveto}}^{\mathrm{tight}}$. The interpolation between signal scenarios studied is included for illustration purposes only and may be subject to interpolation effects in sparsely populated areas.
Acceptance across the wino NLSP $\lambda_{i33}\neq 0$ models for SR2$_{\mathrm{breq}}$. The interpolation between signal scenarios studied is included for illustration purposes only and may be subject to interpolation effects in sparsely populated areas.
Efficiency across the wino NLSP $\lambda_{i33}\neq 0$ models for SR2$_{\mathrm{breq}}$. The interpolation between signal scenarios studied is included for illustration purposes only and may be subject to interpolation effects in sparsely populated areas.
Acceptance across the GGM Higgsino grid for SR0-ZZ$^{\mathrm{loose}}$. The interpolation between signal scenarios studied is included for illustration purposes only and may be subject to interpolation effects in sparsely populated areas.
Efficiency across the GGM Higgsino grid for SR0-ZZ$^{\mathrm{loose}}$. The interpolation between signal scenarios studied is included for illustration purposes only and may be subject to interpolation effects in sparsely populated areas.
Acceptance across the GGM Higgsino grid for SR0-ZZ$^{\mathrm{tight}}$. The interpolation between signal scenarios studied is included for illustration purposes only and may be subject to interpolation effects in sparsely populated areas.
Efficiency across the GGM Higgsino grid for SR0-ZZ$^{\mathrm{tight}}$. The interpolation between signal scenarios studied is included for illustration purposes only and may be subject to interpolation effects in sparsely populated areas.
Acceptance across the GGM Higgsino grid for SR0-ZZ$_{\mathrm{bveto}}^{\mathrm{loose}}$. The interpolation between signal scenarios studied is included for illustration purposes only and may be subject to interpolation effects in sparsely populated areas.
Efficiency across the GGM Higgsino grid for SR0-ZZ$_{\mathrm{bveto}}^{\mathrm{loose}}$. The interpolation between signal scenarios studied is included for illustration purposes only and may be subject to interpolation effects in sparsely populated areas.
Acceptance across the GGM Higgsino grid for SR0-ZZ$_{\mathrm{bveto}}^{\mathrm{tight}}$. The interpolation between signal scenarios studied is included for illustration purposes only and may be subject to interpolation effects in sparsely populated areas.
Efficiency across the GGM Higgsino grid for SR0-ZZ$_{\mathrm{bveto}}^{\mathrm{tight}}$. The interpolation between signal scenarios studied is included for illustration purposes only and may be subject to interpolation effects in sparsely populated areas.
The $p_{\mathrm{T}}$ of the light leptons in distribution in SR0$_{\mathrm{bveto}}^{\mathrm{loose}}$. Distributions for data, the estimated SM backgrounds after the background-only fit, and an example SUSY scenario are shown. "Other" is the sum of the $tWZ$, $t\bar{t}WW$, $t\bar{t} ZZ$, $t\bar{t} WH$, $t\bar{t} HH$, $t\bar{t} tW$, and $t\bar{t}t\bar{t}$ backgrounds. The last bin captures the overflow events. The lower panel shows the ratio of the observed data to the expected SM background yield in each bin. Both the statistical and systematic uncertainties in the SM background are included in the shaded band.
The $p_{\mathrm{T}}$ of the light leptons in distribution in SR0-ZZ$^{\mathrm{loose}}$. Distributions for data, the estimated SM backgrounds after the background-only fit, and an example SUSY scenario are shown. "Other" is the sum of the $tWZ$, $t\bar{t}WW$, $t\bar{t} ZZ$, $t\bar{t} WH$, $t\bar{t} HH$, $t\bar{t} tW$, and $t\bar{t}t\bar{t}$ backgrounds. The last bin captures the overflow events. The lower panel shows the ratio of the observed data to the expected SM background yield in each bin. Both the statistical and systematic uncertainties in the SM background are included in the shaded band.
The $p_{\mathrm{T}}$ of the light leptons in distribution in SR0-ZZ$^{\mathrm{tight}}$. Distributions for data, the estimated SM backgrounds after the background-only fit, and an example SUSY scenario are shown. "Other" is the sum of the $tWZ$, $t\bar{t}WW$, $t\bar{t} ZZ$, $t\bar{t} WH$, $t\bar{t} HH$, $t\bar{t} tW$, and $t\bar{t}t\bar{t}$ backgrounds. The last bin captures the overflow events. The lower panel shows the ratio of the observed data to the expected SM background yield in each bin. Both the statistical and systematic uncertainties in the SM background are included in the shaded band.
The $p_{\mathrm{T}}$ of the light leptons in distribution in SR0-ZZ$_{\mathrm{bveto}}^{\mathrm{loose}}$. Distributions for data, the estimated SM backgrounds after the background-only fit, and an example SUSY scenario are shown. "Other" is the sum of the $tWZ$, $t\bar{t}WW$, $t\bar{t} ZZ$, $t\bar{t} WH$, $t\bar{t} HH$, $t\bar{t} tW$, and $t\bar{t}t\bar{t}$ backgrounds. The last bin captures the overflow events. The lower panel shows the ratio of the observed data to the expected SM background yield in each bin. Both the statistical and systematic uncertainties in the SM background are included in the shaded band.
The $p_{\mathrm{T}}$ of the light leptons in distribution in SR5L. Distributions for data, the estimated SM backgrounds after the background-only fit, and an example SUSY scenario are shown. "Other" is the sum of the $tWZ$, $t\bar{t}WW$, $t\bar{t} ZZ$, $t\bar{t} WH$, $t\bar{t} HH$, $t\bar{t} tW$, and $t\bar{t}t\bar{t}$ backgrounds. The last bin captures the overflow events. The lower panel shows the ratio of the observed data to the expected SM background yield in each bin. Both the statistical and systematic uncertainties in the SM background are included in the shaded band.
The $p_{\mathrm{T}}$ of the light leptons in distribution in SR1$_{\mathrm{bveto}}^{\mathrm{loose}}$. Distributions for data, the estimated SM backgrounds after the background-only fit, and an example SUSY scenario are shown. "Other" is the sum of the $tWZ$, $t\bar{t}WW$, $t\bar{t} ZZ$, $t\bar{t} WH$, $t\bar{t} HH$, $t\bar{t} tW$, and $t\bar{t}t\bar{t}$ backgrounds. The last bin captures the overflow events. The lower panel shows the ratio of the observed data to the expected SM background yield in each bin. Both the statistical and systematic uncertainties in the SM background are included in the shaded band.
The $p_{\mathrm{T}}$ of the taus leptons in distribution in SR1$_{\mathrm{bveto}}^{\mathrm{loose}}$. Distributions for data, the estimated SM backgrounds after the background-only fit, and an example SUSY scenario are shown. "Other" is the sum of the $tWZ$, $t\bar{t}WW$, $t\bar{t} ZZ$, $t\bar{t} WH$, $t\bar{t} HH$, $t\bar{t} tW$, and $t\bar{t}t\bar{t}$ backgrounds. The last bin captures the overflow events. The lower panel shows the ratio of the observed data to the expected SM background yield in each bin. Both the statistical and systematic uncertainties in the SM background are included in the shaded band.
The $p_{\mathrm{T}}$ of the light taus in distribution in SR2$_{\mathrm{bveto}}^{\mathrm{loose}}$. Distributions for data, the estimated SM backgrounds after the background-only fit, and an example SUSY scenario are shown. "Other" is the sum of the $tWZ$, $t\bar{t}WW$, $t\bar{t} ZZ$, $t\bar{t} WH$, $t\bar{t} HH$, $t\bar{t} tW$, and $t\bar{t}t\bar{t}$ backgrounds. The last bin captures the overflow events. The lower panel shows the ratio of the observed data to the expected SM background yield in each bin. Both the statistical and systematic uncertainties in the SM background are included in the shaded band.
The lepton flavour and multiplicities in events with four light leptons and a Z veto. Distributions for data, the estimated SM backgrounds after the background-only fit, and an example SUSY scenario are shown. "Other" is the sum of the $tWZ$, $t\bar{t}WW$, $t\bar{t} ZZ$, $t\bar{t} WH$, $t\bar{t} HH$, $t\bar{t} tW$, and $t\bar{t}t\bar{t}$ backgrounds. The last bin captures the overflow events. The lower panel shows the ratio of the observed data to the expected SM background yield in each bin. Both the statistical and systematic uncertainties in the SM background are included in the shaded band.
The lepton flavour and multiplicities in events with four light leptons and one Z candidate. Distributions for data, the estimated SM backgrounds after the background-only fit, and an example SUSY scenario are shown. "Other" is the sum of the $tWZ$, $t\bar{t}WW$, $t\bar{t} ZZ$, $t\bar{t} WH$, $t\bar{t} HH$, $t\bar{t} tW$, and $t\bar{t}t\bar{t}$ backgrounds. The last bin captures the overflow events. The lower panel shows the ratio of the observed data to the expected SM background yield in each bin. Both the statistical and systematic uncertainties in the SM background are included in the shaded band.
The lepton flavour and multiplicities in events with four light leptons and two Z candidates. Distributions for data, the estimated SM backgrounds after the background-only fit, and an example SUSY scenario are shown. "Other" is the sum of the $tWZ$, $t\bar{t}WW$, $t\bar{t} ZZ$, $t\bar{t} WH$, $t\bar{t} HH$, $t\bar{t} tW$, and $t\bar{t}t\bar{t}$ backgrounds. The last bin captures the overflow events. The lower panel shows the ratio of the observed data to the expected SM background yield in each bin. Both the statistical and systematic uncertainties in the SM background are included in the shaded band.
The lepton flavour and multiplicities in events with exactly five light leptons. Distributions for data, the estimated SM backgrounds after the background-only fit, and an example SUSY scenario are shown. "Other" is the sum of the $tWZ$, $t\bar{t}WW$, $t\bar{t} ZZ$, $t\bar{t} WH$, $t\bar{t} HH$, $t\bar{t} tW$, and $t\bar{t}t\bar{t}$ backgrounds. The last bin captures the overflow events. The lower panel shows the ratio of the observed data to the expected SM background yield in each bin. Both the statistical and systematic uncertainties in the SM background are included in the shaded band.
The lepton flavour and multiplicities in events with three light leptons and one tau and a Z veto. Distributions for data, the estimated SM backgrounds after the background-only fit, and an example SUSY scenario are shown. "Other" is the sum of the $tWZ$, $t\bar{t}WW$, $t\bar{t} ZZ$, $t\bar{t} WH$, $t\bar{t} HH$, $t\bar{t} tW$, and $t\bar{t}t\bar{t}$ backgrounds. The last bin captures the overflow events. The lower panel shows the ratio of the observed data to the expected SM background yield in each bin. Both the statistical and systematic uncertainties in the SM background are included in the shaded band.
The lepton flavour and multiplicities in events with three light leptons and one tau and one Z candidate. Distributions for data, the estimated SM backgrounds after the background-only fit, and an example SUSY scenario are shown. "Other" is the sum of the $tWZ$, $t\bar{t}WW$, $t\bar{t} ZZ$, $t\bar{t} WH$, $t\bar{t} HH$, $t\bar{t} tW$, and $t\bar{t}t\bar{t}$ backgrounds. The last bin captures the overflow events. The lower panel shows the ratio of the observed data to the expected SM background yield in each bin. Both the statistical and systematic uncertainties in the SM background are included in the shaded band.
The lepton flavour and multiplicities in events with two light leptons and two taus and a Z veto. Distributions for data, the estimated SM backgrounds after the background-only fit, and an example SUSY scenario are shown. "Other" is the sum of the $tWZ$, $t\bar{t}WW$, $t\bar{t} ZZ$, $t\bar{t} WH$, $t\bar{t} HH$, $t\bar{t} tW$, and $t\bar{t}t\bar{t}$ backgrounds. The last bin captures the overflow events. The lower panel shows the ratio of the observed data to the expected SM background yield in each bin. Both the statistical and systematic uncertainties in the SM background are included in the shaded band.
The lepton flavour and multiplicities in events with two light leptons and two taus and one Z candidate. Distributions for data, the estimated SM backgrounds after the background-only fit, and an example SUSY scenario are shown. "Other" is the sum of the $tWZ$, $t\bar{t}WW$, $t\bar{t} ZZ$, $t\bar{t} WH$, $t\bar{t} HH$, $t\bar{t} tW$, and $t\bar{t}t\bar{t}$ backgrounds. The last bin captures the overflow events. The lower panel shows the ratio of the observed data to the expected SM background yield in each bin. Both the statistical and systematic uncertainties in the SM background are included in the shaded band.
Cutflow event yields in regions SR0$_{\mathrm{bveto}}^{\mathrm{loose}}$, SR0$_{\mathrm{bveto}}^{\mathrm{tight}}$, SR0$_{\mathrm{breq}}$, and SR5L for RPV models with the $\lambda_{12k}\neq 0$ coupling. All yields correspond to weighted events, so that effects from lepton reconstruction efficiencies, trigger corrections, pileup reweighting, etc., are included. They are normalized to the integrated luminosity of the data sample, $\int L dt = 139\,\mbox{fb\(^{-1}\)}$. The preliminary event reduction is a centralized stage where at least two electrons/muons with uncalibrated $p_{\mathrm{T}} >$ 9 GeV are required.
Cutflow event yields in regions SR1$_{\mathrm{bveto}}^{\mathrm{loose}}$, SR1$_{\mathrm{bveto}}^{\mathrm{tight}}$, and SR1$_{\mathrm{breq}}$ for RPV models with the $\lambda_{i33}\neq 0$ coupling. All yields correspond to weighted events, so that effects from lepton reconstruction efficiencies, trigger corrections, pileup reweighting, etc., are included. They are normalized to the integrated luminosity of the data sample, $\int L dt = 139\,\mbox{fb\(^{-1}\)}$. The preliminary event reduction is a centralized stage where at least two electrons/muons with uncalibrated $p_{\mathrm{T}} >$ 9 GeV are required.
Cutflow event yields in regions SR2$_{\mathrm{bveto}}^{\mathrm{loose}}$, SR2$_{\mathrm{bveto}}^{\mathrm{tight}}$, and SR2$_{\mathrm{breq}}$ for RPV models with the $\lambda_{i33}\neq 0$ coupling. All yields correspond to weighted events, so that effects from lepton reconstruction efficiencies, trigger corrections, pileup reweighting, etc., are included. They are normalized to the integrated luminosity of the data sample, $\int L dt = 139\,\mbox{fb\(^{-1}\)}$. The preliminary event reduction is a centralized stage where at least two electrons/muons with uncalibrated $p_{\mathrm{T}} >$ 9 GeV are required.
Cutflow event yields in regions SR0-ZZ$^{\mathrm{loose}}$, SR0-ZZ$^{\mathrm{tight}}$, SR0-ZZ$_{\mathrm{bveto}}^{\mathrm{loose}}$, SR0-ZZ$_{\mathrm{bveto}}^{\mathrm{tight}}$, and SR5L the higgsino GGM RPC model with BR($\tilde{\chi}^{0}_1 \rightarrow Z \tilde{G}$) = 50% and higgsino masses of 200 GeV, or BR($\tilde{\chi}^{0}_1 \rightarrow Z \tilde{G}$) = 100% and higgsino masses of 300 GeV. All yields correspond to weighted events, so that effects from lepton reconstruction efficiencies, trigger corrections, pileup reweighting, etc., are included. They are normalized to the integrated luminosity of the data sample, $\int L dt = 139\,\mbox{fb\(^{-1}\)}$. The generator filter is a selection of $\geq$4e/$\mu$/$\tau_{\mathrm{had-vis}}$ leptons with $p_{\mathrm{T}}(e,\mu)>4$GeV, $p_{\mathrm{T}}(\tau_{\mathrm{had-vis}})>15$GeV and $|\eta|<2.8$ and is applied during the MC generation of the simulated events. The preliminary event reduction is a centralized stage where at least two electrons/muons with uncalibrated $p_{\mathrm{T}} > 9$ GeV are required.
A search for pair production of bottom squarks in events with hadronically decaying $\tau$-leptons, $b$-tagged jets and large missing transverse momentum is presented. The analyzed dataset is based on proton-proton collisions at $\sqrt{s}$ = 13 TeV delivered by the Large Hadron Collider and recorded by the ATLAS detector from 2015 to 2018, and corresponds to an integrated luminosity of 139 fb$^{-1}$. The observed data are compatible with the expected Standard Model background. Results are interpreted in a simplified model where each bottom squark is assumed to decay into the second-lightest neutralino $\tilde \chi_2^0$ and a bottom quark, with $\tilde \chi_2^0$ decaying into a Higgs boson and the lightest neutralino $\tilde \chi_1^0$. The search focuses on final states where at least one Higgs boson decays into a pair of hadronically decaying $\tau$-leptons. This allows the acceptance and thus the sensitivity to be significantly improved relative to the previous results at low masses of the $\tilde \chi_2^0$, where bottom-squark masses up to 850 GeV are excluded at the 95% confidence level, assuming a mass difference of 130 GeV between $\tilde \chi_2^0$ and $\tilde \chi_1^0$. Model-independent upper limits are also set on the cross section of processes beyond the Standard Model.
The expected exclusion contour at $95\%$ CL as a function of the M(Sbottom) vs. M(N2) with the $\Delta M$(N2,N1) = 130 GeV. Masses within the contour are excluded.
The observed exclusion contour at $95\%$ CL as a function of the M(Sbottom) vs. M(N2) with the $\Delta M$(N2,N1) = 130 GeV. Masses within the contour are excluded.
Acceptance in the Single-bin SR as a function of the M(Sbottom) vs. M(N2) with the $\Delta M$(N2,N1) = 130 GeV. Keep in mind that the acceptance is given in units of $10^{-4}$.
Efficiency in the Single-bin SR as a function of the M(Sbottom) vs. M(N2) with the $\Delta$ M(N2,N1) $= 130$ GeV. Keep in mind that the efficiency is given in units of $10^{-2}$.
Acceptance in the Multi-bin SR, $\min_{\Theta} < 0.5$ bin as a function of the M(Sbottom) vs. M(N2) with the $\Delta M$(N2,N1) = 130 GeV. Keep in mind that the acceptance is given in units of $10^{-4}$.
Efficiency in the Multi-bin SR, $\min_{\Theta} < 0.5$ bin as a function of the M(Sbottom) vs. M(N2) with the $\Delta M$(N2,N1) = 130 GeV. Keep in mind that the efficiency is given in units of $10^{-2}$.
Acceptance in the Multi-bin SR, $0.5 < \min_{\Theta} < 1.0$ bin as a function of the M(Sbottom) vs. M(N2) with the $\Delta M$(N2,N1) = 130 GeV. Keep in mind that the acceptance is given in units of $10^{-4}$.
Efficiency in the Multi-bin SR, $0.5 < \min_{\Theta} < 1.0$ bin as a function of the M(Sbottom) vs. M(N2) with the $\Delta M$(N2,N1) = 130 GeV. Keep in mind that the efficiency is given in units of $10^{-2}$.
Acceptance in the Multi-bin SR, $\min_{\Theta} > 1.0$ bin as a function of the M(Sbottom) vs. M(N2) with the $\Delta M$(N2,N1) = 130 GeV. Keep in mind that the acceptance is given in units of $10^{-4}$.
Efficiency in the Multi-bin SR, $\min_{\Theta} > 1.0$ bin as a function of the M(Sbottom) vs. M(N2) with the $\Delta M$(N2,N1) = 130 GeV. Keep in mind that the efficiency is given in units of $10^{-2}$.
Observed upper limits on the signal cross section as a function of the M(Sbottom) vs. M(N2) with the $\Delta M$(N2,N1) = 130 GeV.
Expected upper limits on the signal cross section as a function of the M(Sbottom) vs. M(N2) with the $\Delta M$(N2,N1) = 130 GeV.
Cutflows for the bechmarl signal point M(Sbottom) = 800 GeV, M(N2) = 180 GeV. Weighted event yields are reported starting with the "Preselection" line, normalized to an integrated luminosity of $139$ fb$^{−1}$.
Comparison of the expected and observed event yields in the signal regions. The top-quark and Z(mumu) background contributions are scaled with the normalization factors obtained from the background-only fit. The other contribution includes all the backgrounds not explicitly listed in the legend (V+jets except Z(mumu)+jets, di-/triboson, multijet). The hatched band indicates the total statistical and systematic uncertainties in the SM background. The contributions from three signal models to the signal regions are also displayed, where the masses M(Sbottom) and M(N2) are given in GeV in the legend. The lower panel shows the significance of the deviation of the observed yield from the expected background yield.
Dominant systematic uncertainties in the background prediction for the signal regions after the fit to the control regions. “Other” includes the uncertainties arising from muons, jet-vertex tagging, modeling of pile-up, the $E_{T}^{miss}$ computation, multijet background, and luminosity. The individual uncertainties can be correlated and do not necessarily add up quadratically to the total uncertainty.
A search for production of the supersymmetric partners of the top quark, top squarks, is presented. The search is based on proton-proton collision events containing multiple jets, no leptons, and large transverse momentum imbalance. The data were collected with the CMS detector at the CERN LHC at a center-of-mass energy of 13 TeV, and correspond to an integrated luminosity of 137 fb$^{-1}$. The targeted signal production scenarios are direct and gluino-mediated top squark production, including scenarios in which the top squark and neutralino masses are nearly degenerate. The search utilizes novel algorithms based on deep neural networks that identify hadronically decaying top quarks and W bosons, which are expected in many of the targeted signal models. No statistically significant excess of events is observed relative to the expectation from the standard model, and limits on the top squark production cross section are obtained in the context of simplified supersymmetric models for various production and decay modes. Exclusion limits as high as 1310 GeV are established at the 95% confidence level on the mass of the top squark for direct top squark production models, and as high as 2260 GeV on the mass of the gluino for gluino-mediated top squark production models. These results represent a significant improvement over the results of previous searches for supersymmetry by CMS in the same final state.
Top quark tagging efficiencies are shown as a function of the generator-level top quark $p_T$ for the merged tagging algorithm and resolved tagging algorithm described in the paper. This plot shows the efficiencies as calculated in a sample of simulated $t\bar{t}$ events in which one top quark decays leptonically, while the other decays hadronically. In addition to the individual algorithms shown as orange squares (boosted top quarks) and green inverted triangles (resolved top quarks), the total top quark tagging efficiency (blue dots) is also shown.
W boson tagging efficiencies are shown as a function of the generator-level W boson $p_T$ for the merged tagging algorithm described in the paper. This plot shows the W boson tagging efficiency when calculated in a sample of simulated WW events.
Comparison between data and simulation in the high $\Delta$m portion of the $\ell+\text{jets}$ control region as a function of $p_T^{miss}$ after scaling the simulation to match the total yield in data. The hatched region indicates the total shape uncertainty in the simulation.
The ratio between the observed data and the simulation in the high $\Delta$m portion of the $\ell+\text{jets}$ control region as a function of $p_T^{miss}$ after scaling the simulation to match the total yield in data.
Comparison between data and simulation in the high $\Delta$m portion of the $\ell+\text{jets}$ control region as a function of $N_t$ after scaling the simulation to match the total yield in data. The hatched region indicates the total shape uncertainty in the simulation.
The ratio between the observed data and the simulation in the high $\Delta$m portion of the $\ell+\text{jets}$ control region as a function of $N_t$ after scaling the simulation to match the total yield in data.
Comparison between data and simulation in the high $\Delta$m portion of the $\ell+\text{jets}$ control region as a function of $N_W$ after scaling the simulation to match the total yield in data. The hatched region indicates the total shape uncertainty in the simulation.
The ratio between the observed data and the simulation in the high $\Delta$m portion of the $\ell+\text{jets}$ control region as a function of $N_W$ after scaling the simulation to match the total yield in data.
Comparison between data and simulation in the high $\Delta$m portion of the $\ell+\text{jets}$ control region as a function of $N_{\text{res}}$ after scaling the simulation to match the total yield in data. The hatched region indicates the total shape uncertainty in the simulation.
The ratio between the observed data and the simulation in the high $\Delta$m portion of the $\ell+\text{jets}$ control region as a function of $N_{\text{res}}$ after scaling the simulation to match the total yield in data.
Observed event yields in data (black points) and predicted SM background (filled histograms) for the low $\Delta$m search bins 0--52. The signal models are denoted in the legend with the masses in GeV of the SUSY particles in parentheses: $(m_{\tilde{t}}, m_{\tilde{\chi}^0_1})$ or $(m_{\tilde{g}}, m_{\tilde{\chi}^0_1})$ for the T2 or T1 signal models, respectively. The hatched bands correspond to the total uncertainty in the background prediction. The (unstacked) distributions for two example signal models are also shown.
The ratio of the data to the total background prediction for the low $\Delta$m search bins 0--52. The hatched bands correspond to the total uncertainty in the background prediction.
Observed event yields in data (black points) and predicted SM background (filled histograms) for the high $\Delta$m search bins 53--104. The signal models are denoted in the legend with the masses in GeV of the SUSY particles in parentheses: $(m_{\tilde{t}}, m_{\tilde{\chi}^0_1})$ or $(m_{\tilde{g}}, m_{\tilde{\chi}^0_1})$ for the T2 or T1 signal models, respectively. The hatched bands correspond to the total uncertainty in the background prediction. The (unstacked) distributions for two example signal models are also shown.
The ratio of the data to the total background prediction for the high $\Delta$m search bins 53--104. The hatched bands correspond to the total uncertainty in the background prediction.
Observed event yields in data (black points) and predicted SM background (filled histograms) for the high $\Delta$m search bins 105--152 with ${N_b = 2}$. The signal models are denoted in the legend with the masses in GeV of the SUSY particles in parentheses: $(m_{\tilde{t}}, m_{\tilde{\chi}^0_1})$ or $(m_{\tilde{g}}, m_{\tilde{\chi}^0_1})$ for the T2 or T1 signal models, respectively. The hatched bands correspond to the total uncertainty in the background prediction. The (unstacked) distributions for two example signal models are also shown.
The ratio of the data to the total background prediction for the high $\Delta$m search bins 105--152 with ${N_b = 2}$. The hatched bands correspond to the total uncertainty in the background prediction.
Observed event yields in data (black points) and predicted SM background (filled histograms) for the high $\Delta$m search bins 153--182 with ${N_b \geq 3}$. The signal models are denoted in the legend with the masses in GeV of the SUSY particles in parentheses: $(m_{\tilde{t}}, m_{\tilde{\chi}^0_1})$ or $(m_{\tilde{g}}, m_{\tilde{\chi}^0_1})$ for the T2 or T1 signal models, respectively. The hatched bands correspond to the total uncertainty in the background prediction. The (unstacked) distributions for two example signal models are also shown.
The ratio of the data to the total background prediction for the high $\Delta$m search bins 153--182 with ${N_b \geq 3}$. The hatched bands correspond to the total uncertainty in the background prediction.
The observed 95% CL upper limit on the production cross section of the T2tt simplified model as a function of the top squark and LSP masses. No interpretation is provided for signal models for which ${|{m_{\tilde{t}} - m_{\tilde{\chi}^0_1} - m_t}| < 25 GeV}$ and ${m_{\tilde{t}} < 275 GeV}$ as described in the text.
The expected 95% CL upper limit on the production cross section of the T2tt simplified model as a function of the top squark and LSP masses. No interpretation is provided for signal models for which ${|{m_{\tilde{t}} - m_{\tilde{\chi}^0_1} - m_t}| < 25 GeV}$ and ${m_{\tilde{t}} < 275 GeV}$ as described in the text.
The observed exclusion contour of the T2tt simplified model with respect to approximate NNLO+NNLL signal cross sections and the change in this contour due to variation of these cross sections within their theoretical uncertainties ($\sigma_{\text{theory}}$). No interpretation is provided for signal models for which ${|{m_{\tilde{t}} - m_{\tilde{\chi}^0_1} - m_t}| < 25 GeV}$ and ${m_{\tilde{t}} < 275 GeV}$ as described in the text.
The mean expected exclusion contour of the T2tt simplified model and the region containing 68 and 95\% ($\pm 1$ and $2\,\sigma_{\text{experiment}}$) of the distribution of expected exclusion limits under the background-only hypothesis. No interpretation is provided for signal models for which ${|{m_{\tilde{t}} - m_{\tilde{\chi}^0_1} - m_t}| < 25 GeV}$ and ${m_{\tilde{t}} < 275 GeV}$ as described in the text.
The observed 95% CL upper limit on the production cross section of the T2bW simplified model as a function of the top squark and LSP masses.
The expected 95% CL upper limit on the production cross section of the T2bW simplified model as a function of the top squark and LSP masses.
The observed exclusion contour of the T2bW simplified model with respect to approximate NNLO+NNLL signal cross sections and the change in this contour due to variation of these cross sections within their theoretical uncertainties ($\sigma_{\text{theory}}$).
The mean expected exclusion contour of the T2bW simplified model and the region containing 68 and 95\% ($\pm 1$ and $2\,\sigma_{\text{experiment}}$) of the distribution of expected exclusion limits under the background-only hypothesis.
The observed 95% CL upper limit on the production cross section of the T2tb simplified model as a function of the top squark and LSP masses.
The expected 95% CL upper limit on the production cross section of the T2tb simplified model as a function of the top squark and LSP masses.
The observed exclusion contour of the T2tb simplified model with respect to approximate NNLO+NNLL signal cross sections and the change in this contour due to variation of these cross sections within their theoretical uncertainties ($\sigma_{\text{theory}}$).
The mean expected exclusion contour of the T2tb simplified model and the region containing 68 and 95\% ($\pm 1$ and $2\,\sigma_{\text{experiment}}$) of the distribution of expected exclusion limits under the background-only hypothesis.
The observed 95% CL upper limit on the production cross section of the T2ttC simplified model as a function of the top squark mass and the difference between the top squark and LSP masses.
The expected 95% CL upper limit on the production cross section of the T2ttC simplified model as a function of the top squark mass and the difference between the top squark and LSP masses.
The observed exclusion contour of the T2ttC simplified model with respect to approximate NNLO+NNLL signal cross sections and the change in this contour due to variation of these cross sections within their theoretical uncertainties ($\sigma_{\text{theory}}$).
The mean expected exclusion contour of the T2ttC simplified model and the region containing 68\% ($\pm 1\,\sigma_{\text{experiment}}$) of the distribution of expected exclusion limits under the background-only hypothesis.
The observed 95% CL upper limit on the production cross section of the T2bWC simplified model as a function of the top squark mass and the difference between the top squark and LSP masses.
The expected 95% CL upper limit on the production cross section of the T2bWC simplified model as a function of the top squark mass and the difference between the top squark and LSP masses.
The observed exclusion contour of the T2bWC simplified model with respect to approximate NNLO+NNLL signal cross sections and the change in this contour due to variation of these cross sections within their theoretical uncertainties ($\sigma_{\text{theory}}$).
The mean expected exclusion contour of the T2bWC simplified model and the region containing 68\% ($\pm 1\,\sigma_{\text{experiment}}$) of the distribution of expected exclusion limits under the background-only hypothesis.
The observed 95% CL upper limit on the production cross section of the T2cc simplified model as a function of the top squark mass and the difference between the top squark and LSP masses.
The expected 95% CL upper limit on the production cross section of the T2cc simplified model as a function of the top squark mass and the difference between the top squark and LSP masses.
The observed exclusion contour of the T2cc simplified model with respect to approximate NNLO+NNLL signal cross sections and the change in this contour due to variation of these cross sections within their theoretical uncertainties ($\sigma_{\text{theory}}$).
The mean expected exclusion contour of the T2cc simplified model and the region containing 68\% ($\pm 1\,\sigma_{\text{experiment}}$) of the distribution of expected exclusion limits under the background-only hypothesis.
The observed 95% CL upper limit on the production cross section of the T1tttt simplified model as a function of the gluino and LSP masses.
The expected 95% CL upper limit on the production cross section of the T1tttt simplified model as a function of the gluino and LSP masses.
The observed exclusion contour of the T1tttt simplified model with respect to approximate NNLO+NNLL signal cross sections and the change in this contour due to variation of these cross sections within their theoretical uncertainties ($\sigma_{\text{theory}}$).
The mean expected exclusion contour of the T1tttt simplified model and the region containing 68 and 95\% ($\pm 1$ and $2\,\sigma_{\text{experiment}}$) of the distribution of expected exclusion limits under the background-only hypothesis.
The observed 95% CL upper limit on the production cross section of the T1ttbb simplified model as a function of the gluino and LSP masses.
The expected 95% CL upper limit on the production cross section of the T1ttbb simplified model as a function of the gluino and LSP masses.
The observed exclusion contour of the T1ttbb simplified model with respect to approximate NNLO+NNLL signal cross sections and the change in this contour due to variation of these cross sections within their theoretical uncertainties ($\sigma_{\text{theory}}$).
The mean expected exclusion contour of the T1ttbb simplified model and the region containing 68 and 95\% ($\pm 1$ and $2\,\sigma_{\text{experiment}}$) of the distribution of expected exclusion limits under the background-only hypothesis.
The observed 95% CL upper limit on the production cross section of the T5ttcc simplified model as a function of the gluino and LSP masses. The upper limits do not take into account contributions from direct top squark pair production; however, its effect is small for $m_{\tilde{\chi}^0_1} > 600 GeV$, which corresponds to the phase space beyond the exclusions based on direct top squark pair production. The excluded regions based on direct top squark pair production from this search and earlier searches are indicated by the hatched areas.
The expected 95% CL upper limit on the production cross section of the T5ttcc simplified model as a function of the gluino and LSP masses. The uppser limits do not take into account contributions from direct top squark pair production; however, its effect is small for $m_{\tilde{\chi}^0_1} > 600 GeV$, which corresponds to the phase space beyond the exclusions based on direct top squark pair production. The excluded regions based on direct top squark pair production from this search and earlier searches are indicated by the hatched areas.
The observed exclusion contour of the T5ttcc simplified model with respect to approximate NNLO+NNLL signal cross sections and the change in this contour due to variation of these cross sections within their theoretical uncertainties ($\sigma_{\text{theory}}$). The expected and observed upper limits do not take into account contributions from direct top squark pair production; however, its effect is small for $m_{\tilde{\chi}^0_1} > 600 GeV$, which corresponds to the phase space beyond the exclusions based on direct top squark pair production. The excluded regions based on direct top squark pair production from this search and earlier searches are indicated by the hatched areas.
The mean expected exclusion contour of the T5ttcc simplified model and the region containing 68% and 95% ($\pm 1$ and $2\,\sigma_{\text{experiment}}$) of the distribution of expected exclusion limits under the background-only hypothesis. The expected and observed upper limits do not take into account contributions from direct top squark pair production; however, its effect is small for $m_{\tilde{\chi}^0_1} > 600 GeV$, which corresponds to the phase space beyond the exclusions based on direct top squark pair production. The excluded regions based on direct top squark pair production from this search and earlier searches are indicated by the hatched areas.
A search is presented for a heavy vector resonance decaying into a Z boson and the standard model Higgs boson, where the Z boson is identified through its leptonic decays to electrons, muons, or neutrinos, and the Higgs boson is identified through its hadronic decays. The search is performed in a Lorentz-boosted regime and is based on data collected from 2016 to 2018 at the CERN LHC, corresponding to an integrated luminosity of 137 fb$^{-1}$. Upper limits are derived on the production of a narrow heavy resonance Z', and a mass below 3.5 and 3.7 TeV is excluded at 95% confidence level in models where the heavy vector boson couples exclusively to fermions and to bosons, respectively. These are the most stringent limits placed on the Heavy Vector Triplet Z' model to date. If the heavy vector boson couples exclusively to standard model bosons, upper limits on the product of the cross section and branching fraction are set between 23 and 0.3 fb for a Z' mass between 0.8 and 4.6 TeV, respectively. This is the first limit set on a heavy vector boson coupling exclusively to standard model bosons in its production and decay.
The product of signal acceptance and efficiency in the 0l categories for the signal produced via qqbar annihilation.
The product of signal acceptance and efficiency in the 2l categories for the signal produced via qqbar annihilation.
The product of signal acceptance and efficiency in the 0l categories for the signal produced via vector boson fusion.
The product of signal acceptance and efficiency in the 2l categories for the signal produced via vector boson fusion.
$m_{X}^{T}$ distribution in data in the 0l 2b non-VBF category. The data is shown as Events/10 GeV. The distribution is shown up 4000 GeV, which corresponds to the event with the highest $m_{X}^{T}$ observed in the SR.
$m_{X}^{T}$ distribution in data in the 0l $\leq$1b non-VBF category. The data is shown as Events/10 GeV. The distribution is shown up 4000 GeV, which corresponds to the event with the highest $m_{X}^{T}$ observed in the SR.
$m_{X}$ distribution in data in the 2e 2b non-VBF category. The data is shown as Events/10 GeV. The distribution is shown up 4000 GeV, which corresponds to the event with the highest $m_{X}$ observed in the SR.
$m_{X}$ distribution in data in the 2e $\leq$1b non-VBF category. The data is shown as Events/10 GeV. The distribution is shown up 4000 GeV, which corresponds to the event with the highest $m_{X}$ observed in the SR.
$m_{X}$ distribution in data in the 2$\mu$ 2b non-VBF category. The data is shown as Events/10 GeV. The distribution is shown up 4000 GeV, which corresponds to the event with the highest $m_{X}$ observed in the SR.
$m_{X}$ distribution in data in the 2$\mu$ $\leq$1b non-VBF category. The data is shown as Events/10 GeV. The distribution is shown up 4000 GeV, which corresponds to the event with the highest $m_{X}$ observed in the SR.
$m_{X}^{T}$ distribution in data in the 0l 2b VBF category. The data is shown as Events/10 GeV. The distribution is shown up 4000 GeV, which corresponds to the event with the highest $m_{X}^{T}$ observed in the SR.
$m_{X}^{T}$ distribution in data in the 0l $\leq$1b VBF category. The data is shown as Events/10 GeV. The distribution is shown up 4000 GeV, which corresponds to the event with the highest $m_{X}^{T}$ observed in the SR.
$m_{X}$ distribution in data in the 2e 2b VBF category. The data is shown as Events/10 GeV. The distribution is shown up 4000 GeV, which corresponds to the event with the highest $m_{X}$ observed in the SR.
$m_{X}$ distribution in data in the 2e $\leq$1b VBF category. The data is shown as Events/10 GeV. The distribution is shown up 4000 GeV, which corresponds to the event with the highest $m_{X}$ observed in the SR.
$m_{X}$ distribution in data in the 2$\mu$ 2b VBF category. The data is shown as Events/10 GeV. The distribution is shown up 4000 GeV, which corresponds to the event with the highest $m_{X}$ observed in the SR.
$m_{X}$ distribution in data in the 2$\mu$ $\leq$1b VBF category. The data is shown as Events/10 GeV. The distribution is shown up 4000 GeV, which corresponds to the event with the highest $m_{X}$ observed in the SR.
Observed and expected 95% CL upper limit on $\sigma \mathcal{B}$(Z'-> ZH) with all categories combined for the non-VBF signal, including all statistical and systematic uncertainties. The inner green band and the outer yellow band indicate the regions containing 68 and 95%, respectively, of the distribution of expected limits under the background-only hypothesis. The CMS search for a heavy resonance using 2016 data and the same final state [JHEP 11 (2018) 172] is shown as a comparison.
Observed and expected 95% CL upper limit on $\sigma \mathcal{B}$(Z'-> ZH) with all categories combined for the VBF signal, including all statistical and systematic uncertainties. The inner green band and the outer yellow band indicate the regions containing 68 and 95%, respectively, of the distribution of expected limits under the background-only hypothesis.
Observed exclusion limit in the space of the HVT model parameters [$g_{V}c_{H}$, $g^{2}c_{F}/g_{V}$] for mass hypotheses of 2 TeV for the non-VBF signal.
Observed exclusion limit in the space of the HVT model parameters [$g_{V}c_{H}$, $g^{2}c_{F}/g_{V}$] for mass hypotheses of 3 TeV for the non-VBF signal.
Observed exclusion limit in the space of the HVT model parameters [$g_{V}c_{H}$, $g^{2}c_{F}/g_{V}$] for mass hypotheses of 4 TeV for the non-VBF signal.
The results of a search for direct pair production of top squarks and for dark matter in events with two opposite-charge leptons (electrons or muons), jets and missing transverse momentum are reported, using 139 fb$^{-1}$ of integrated luminosity from proton-proton collisions at $\sqrt{s} = 13$ TeV, collected by the ATLAS detector at the Large Hadron Collider during Run 2 (2015-2018). This search considers the pair production of top squarks and is sensitive across a wide range of mass differences between the top squark and the lightest neutralino. Additionally, spin-0 mediator dark-matter models are considered, in which the mediator is produced in association with a pair of top quarks. The mediator subsequently decays to a pair of dark-matter particles. No significant excess of events is observed above the Standard Model background, and limits are set at 95% confidence level. The results exclude top squark masses up to about 1 TeV, and masses of the lightest neutralino up to about 500 GeV. Limits on dark-matter production are set for scalar (pseudoscalar) mediator masses up to about 250 (300) GeV.
Two-body selection. Distributions of $m_{T2}$ in $SR^{2-body}_{110,\infty}$ for (a) different-flavour and (b) same-flavour events satisfying the selection criteria of the given SR, except the one for the presented variable, after the background fit. The contributions from all SM backgrounds are shown as a histogram stack. ''Others'' includes contributions from $VVV$, $t\bar{t} t$, $t\bar{t}$, $t\bar{t} W$, $t\bar{t} WW$, $t\bar{t} WZ$, $t\bar{t} H$, and $tZ$ processes. The hatched bands represent the total statistical and systematic uncertainty. The rightmost bin of each plot includes overflow events. Reference dark-matter signal models are overlayed for comparison. Red arrows in the upper panels indicate the signal region selection criteria. The bottom panels show the ratio of the observed data to the total SM background prediction, with hatched bands representing the total uncertainty in the background prediction.
Two-body selection. Distributions of $m_{T2}$ in $SR^{2-body}_{110,\infty}$ for (a) different-flavour and (b) same-flavour events satisfying the selection criteria of the given SR, except the one for the presented variable, after the background fit. The contributions from all SM backgrounds are shown as a histogram stack. ''Others'' includes contributions from $VVV$, $t\bar{t} t$, $t\bar{t}$, $t\bar{t} W$, $t\bar{t} WW$, $t\bar{t} WZ$, $t\bar{t} H$, and $tZ$ processes. The hatched bands represent the total statistical and systematic uncertainty. The rightmost bin of each plot includes overflow events. Reference dark-matter signal models are overlayed for comparison. Red arrows in the upper panels indicate the signal region selection criteria. The bottom panels show the ratio of the observed data to the total SM background prediction, with hatched bands representing the total uncertainty in the background prediction.
Three-body selection. Distributions of $M_{\Delta}^R$ in (a,b) $SR_{W}^{3-body}$ and (c,d) $SR_{T}^{3-body}$ for (left) same-flavour and (right) different-flavour events satisfying the selection criteria of the given SR, except the one for the presented variable, after the background fit. The contributions from all SM backgrounds are shown as a histogram stack. ''Others'' includes contributions from $VVV$, $t\bar{t} t$, $t\bar{t}t\bar{t}$, $t\bar{t} W$, $t\bar{t} WW$, $t\bar{t} WZ$, $t\bar{t} H$, and $tZ$ processes. The hatched bands represent the total statistical and systematic uncertainty. The rightmost bin of each plot includes overflow events. Reference top squark pair production signal models are overlayed for comparison. Red arrows in the upper panels indicate the signal region selection criteria. The bottom panels show the ratio of the observed data to the total SM background prediction, with hatched bands representing the total uncertainty in the background prediction; red arrows show data outside the vertical-axis range.
Three-body selection. Distributions of $M_{\Delta}^R$ in (a,b) $SR_{W}^{3-body}$ and (c,d) $SR_{T}^{3-body}$ for (left) same-flavour and (right) different-flavour events satisfying the selection criteria of the given SR, except the one for the presented variable, after the background fit. The contributions from all SM backgrounds are shown as a histogram stack. ''Others'' includes contributions from $VVV$, $t\bar{t} t$, $t\bar{t}t\bar{t}$, $t\bar{t} W$, $t\bar{t} WW$, $t\bar{t} WZ$, $t\bar{t} H$, and $tZ$ processes. The hatched bands represent the total statistical and systematic uncertainty. The rightmost bin of each plot includes overflow events. Reference top squark pair production signal models are overlayed for comparison. Red arrows in the upper panels indicate the signal region selection criteria. The bottom panels show the ratio of the observed data to the total SM background prediction, with hatched bands representing the total uncertainty in the background prediction; red arrows show data outside the vertical-axis range.
Three-body selection. Distributions of $M_{\Delta}^R$ in (a,b) $SR_{W}^{3-body}$ and (c,d) $SR_{T}^{3-body}$ for (left) same-flavour and (right) different-flavour events satisfying the selection criteria of the given SR, except the one for the presented variable, after the background fit. The contributions from all SM backgrounds are shown as a histogram stack. ''Others'' includes contributions from $VVV$, $t\bar{t} t$, $t\bar{t}t\bar{t}$, $t\bar{t} W$, $t\bar{t} WW$, $t\bar{t} WZ$, $t\bar{t} H$, and $tZ$ processes. The hatched bands represent the total statistical and systematic uncertainty. The rightmost bin of each plot includes overflow events. Reference top squark pair production signal models are overlayed for comparison. Red arrows in the upper panels indicate the signal region selection criteria. The bottom panels show the ratio of the observed data to the total SM background prediction, with hatched bands representing the total uncertainty in the background prediction; red arrows show data outside the vertical-axis range.
Three-body selection. Distributions of $M_{\Delta}^R$ in (a,b) $SR_{W}^{3-body}$ and (c,d) $SR_{T}^{3-body}$ for (left) same-flavour and (right) different-flavour events satisfying the selection criteria of the given SR, except the one for the presented variable, after the background fit. The contributions from all SM backgrounds are shown as a histogram stack. ''Others'' includes contributions from $VVV$, $t\bar{t} t$, $t\bar{t}t\bar{t}$, $t\bar{t} W$, $t\bar{t} WW$, $t\bar{t} WZ$, $t\bar{t} H$, and $tZ$ processes. The hatched bands represent the total statistical and systematic uncertainty. The rightmost bin of each plot includes overflow events. Reference top squark pair production signal models are overlayed for comparison. Red arrows in the upper panels indicate the signal region selection criteria. The bottom panels show the ratio of the observed data to the total SM background prediction, with hatched bands representing the total uncertainty in the background prediction; red arrows show data outside the vertical-axis range.
Four-body selection. (a) distributions of $E_{T}^{miss}$ in $SR^{4-body}_{Small\,\Delta m}$ and (b) distribution of $R_{2\ell 4j}$ in $SR^{4-body}_{Large\,\Delta m}$ for events satisfying the selection criteria of the given SR, except the one for the presented variable, after the background fit. The contributions from all SM backgrounds are shown as a histogram stack. ''Others'' includes contributions from $VVV$, $t\bar{t} t$, $t\bar{t}$, $t\bar{t} W$, $t\bar{t} WW$, $t\bar{t} WZ$, $t\bar{t} H$, and $tZ$ processes. The hatched bands represent the total statistical and systematic uncertainty. The rightmost bin of each plot includes overflow events. Reference top squark pair production signal models are overlayed for comparison. Red arrows in the upper panel indicate the signal region selection criteria. The bottom panels show the ratio of the observed data to the total SM background prediction, with hatched bands representing the total uncertainty in the background prediction; red arrows show data outside the vertical-axis range.
Four-body selection. (a) distributions of $E_{T}^{miss}$ in $SR^{4-body}_{Small\,\Delta m}$ and (b) distribution of $R_{2\ell 4j}$ in $SR^{4-body}_{Large\,\Delta m}$ for events satisfying the selection criteria of the given SR, except the one for the presented variable, after the background fit. The contributions from all SM backgrounds are shown as a histogram stack. ''Others'' includes contributions from $VVV$, $t\bar{t} t$, $t\bar{t}$, $t\bar{t} W$, $t\bar{t} WW$, $t\bar{t} WZ$, $t\bar{t} H$, and $tZ$ processes. The hatched bands represent the total statistical and systematic uncertainty. The rightmost bin of each plot includes overflow events. Reference top squark pair production signal models are overlayed for comparison. Red arrows in the upper panel indicate the signal region selection criteria. The bottom panels show the ratio of the observed data to the total SM background prediction, with hatched bands representing the total uncertainty in the background prediction; red arrows show data outside the vertical-axis range.
Exclusion limit contour (95% CL) for a simplified model assuming $\tilde{t}_1$ pair production, decaying via $\tilde{t}_1 \rightarrow t^{(*)}\tilde{\chi}_1^0$ with 100% branching ratio, in the (a) $m(\tilde{t}_1)$--$m(\tilde{\chi}_1^0)$ and (b) $m(\tilde{t}_1)$--$\Delta m(\tilde{t}_1,\tilde{\chi}_1^0)$ planes. The dashed lines and the shaded bands are the expected limits and their $\pm1\sigma$ uncertainties. The thick solid lines are the observed limits for the central value of the signal cross-section. The expected and observed limits do not include the effect of the theoretical uncertainties in the signal cross-section. The dotted lines show the effect on the observed limit when varying the signal cross-section by $\pm1\sigma$ of the theoretical uncertainty.
Exclusion limit contour (95% CL) for a simplified model assuming $\tilde{t}_1$ pair production, decaying via $\tilde{t}_1 \rightarrow t^{(*)}\tilde{\chi}_1^0$ with 100% branching ratio, in the (a) $m(\tilde{t}_1)$--$m(\tilde{\chi}_1^0)$ and (b) $m(\tilde{t}_1)$--$\Delta m(\tilde{t}_1,\tilde{\chi}_1^0)$ planes. The dashed lines and the shaded bands are the expected limits and their $\pm1\sigma$ uncertainties. The thick solid lines are the observed limits for the central value of the signal cross-section. The expected and observed limits do not include the effect of the theoretical uncertainties in the signal cross-section. The dotted lines show the effect on the observed limit when varying the signal cross-section by $\pm1\sigma$ of the theoretical uncertainty.
Exclusion limit contour (95% CL) for a simplified model assuming $\tilde{t}_1$ pair production, decaying via $\tilde{t}_1 \rightarrow t^{(*)}\tilde{\chi}_1^0$ with 100% branching ratio, in the (a) $m(\tilde{t}_1)$--$m(\tilde{\chi}_1^0)$ and (b) $m(\tilde{t}_1)$--$\Delta m(\tilde{t}_1,\tilde{\chi}_1^0)$ planes. The dashed lines and the shaded bands are the expected limits and their $\pm1\sigma$ uncertainties. The thick solid lines are the observed limits for the central value of the signal cross-section. The expected and observed limits do not include the effect of the theoretical uncertainties in the signal cross-section. The dotted lines show the effect on the observed limit when varying the signal cross-section by $\pm1\sigma$ of the theoretical uncertainty.
Exclusion limit contour (95% CL) for a simplified model assuming $\tilde{t}_1$ pair production, decaying via $\tilde{t}_1 \rightarrow t^{(*)}\tilde{\chi}_1^0$ with 100% branching ratio, in the (a) $m(\tilde{t}_1)$--$m(\tilde{\chi}_1^0)$ and (b) $m(\tilde{t}_1)$--$\Delta m(\tilde{t}_1,\tilde{\chi}_1^0)$ planes. The dashed lines and the shaded bands are the Observed limits and their $\pm1\sigma$ uncertainties. The thick solid lines are the observed limits for the central value of the signal cross-section. The expected and observed limits do not include the effect of the theoretical uncertainties in the signal cross-section. The dotted lines show the effect on the observed limit when varying the signal cross-section by $\pm1\sigma$ of the theoretical uncertainty.
Exclusion limit contour (95% CL) for a simplified model assuming $\tilde{t}_1$ pair production, decaying via $\tilde{t}_1 \rightarrow t^{(*)}\tilde{\chi}_1^0$ with 100% branching ratio, in the (a) $m(\tilde{t}_1)$--$m(\tilde{\chi}_1^0)$ and (b) $m(\tilde{t}_1)$--$\Delta m(\tilde{t}_1,\tilde{\chi}_1^0)$ planes. The dashed lines and the shaded bands are the expected limits and their $\pm1\sigma$ uncertainties. The thick solid lines are the observed limits for the central value of the signal cross-section. The expected and observed limits do not include the effect of the theoretical uncertainties in the signal cross-section. The dotted lines show the effect on the observed limit when varying the signal cross-section by $\pm1\sigma$ of the theoretical uncertainty.
Exclusion limit contour (95% CL) for a simplified model assuming $\tilde{t}_1$ pair production, decaying via $\tilde{t}_1 \rightarrow t^{(*)}\tilde{\chi}_1^0$ with 100% branching ratio, in the (a) $m(\tilde{t}_1)$--$m(\tilde{\chi}_1^0)$ and (b) $m(\tilde{t}_1)$--$\Delta m(\tilde{t}_1,\tilde{\chi}_1^0)$ planes. The dashed lines and the shaded bands are the expected limits and their $\pm1\sigma$ uncertainties. The thick solid lines are the observed limits for the central value of the signal cross-section. The expected and observed limits do not include the effect of the theoretical uncertainties in the signal cross-section. The dotted lines show the effect on the observed limit when varying the signal cross-section by $\pm1\sigma$ of the theoretical uncertainty.
Exclusion limit contour (95% CL) for a simplified model assuming $\tilde{t}_1$ pair production, decaying via $\tilde{t}_1 \rightarrow t^{(*)}\tilde{\chi}_1^0$ with 100\% branching ratio, in the (a) $m(\tilde{t}_1)$--$m(\tilde{\chi}_1^0)$ and (b) $m(\tilde{t}_1)$--$\Delta m(\tilde{t}_1,\tilde{\chi}_1^0)$ planes. The dashed lines and the shaded bands are the expected limits and their $\pm1\sigma$ uncertainties. The thick solid lines are the observed limits for the central value of the signal cross-section. The expected and observed limits do not include the effect of the theoretical uncertainties in the signal cross-section. The dotted lines show the effect on the observed limit when varying the signal cross-section by $\pm1\sigma$ of the theoretical uncertainty.
Exclusion limit contour (95% CL) for a simplified model assuming $\tilde{t}_1$ pair production, decaying via $\tilde{t}_1 \rightarrow t^{(*)}\tilde{\chi}_1^0$ with 100\% branching ratio, in the (a) $m(\tilde{t}_1)$--$m(\tilde{\chi}_1^0)$ and (b) $m(\tilde{t}_1)$--$\Delta m(\tilde{t}_1,\tilde{\chi}_1^0)$ planes. The dashed lines and the shaded bands are the expected limits and their $\pm1\sigma$ uncertainties. The thick solid lines are the observed limits for the central value of the signal cross-section. The expected and observed limits do not include the effect of the theoretical uncertainties in the signal cross-section. The dotted lines show the effect on the observed limit when varying the signal cross-section by $\pm1\sigma$ of the theoretical uncertainty.
Exclusion limit contour (95% CL) for a simplified model assuming $\tilde{t}_1$ pair production, decaying via $\tilde{t}_1 \rightarrow t^{(*)}\tilde{\chi}_1^0$ with 100\% branching ratio, in the (a) $m(\tilde{t}_1)$--$m(\tilde{\chi}_1^0)$ and (b) $m(\tilde{t}_1)$--$\Delta m(\tilde{t}_1,\tilde{\chi}_1^0)$ planes. The dashed lines and the shaded bands are the expected limits and their $\pm1\sigma$ uncertainties. The thick solid lines are the observed limits for the central value of the signal cross-section. The expected and observed limits do not include the effect of the theoretical uncertainties in the signal cross-section. The dotted lines show the effect on the observed limit when varying the signal cross-section by $\pm1\sigma$ of the theoretical uncertainty.
Exclusion limit contour (95% CL) for a simplified model assuming $\tilde{t}_1$ pair production, decaying via $\tilde{t}_1 \rightarrow t^{(*)}\tilde{\chi}_1^0$ with 100\% branching ratio, in the (a) $m(\tilde{t}_1)$--$m(\tilde{\chi}_1^0)$ and (b) $m(\tilde{t}_1)$--$\Delta m(\tilde{t}_1,\tilde{\chi}_1^0)$ planes. The dashed lines and the shaded bands are the expected limits and their $\pm1\sigma$ uncertainties. The thick solid lines are the observed limits for the central value of the signal cross-section. The expected and observed limits do not include the effect of the theoretical uncertainties in the signal cross-section. The dotted lines show the effect on the observed limit when varying the signal cross-section by $\pm1\sigma$ of the theoretical uncertainty.
Exclusion limit contour (95% CL) for a simplified model assuming $\tilde{t}_1$ pair production, decaying via $\tilde{t}_1 \rightarrow t^{(*)}\tilde{\chi}_1^0$ with 100\% branching ratio, in the (a) $m(\tilde{t}_1)$--$m(\tilde{\chi}_1^0)$ and (b) $m(\tilde{t}_1)$--$\Delta m(\tilde{t}_1,\tilde{\chi}_1^0)$ planes. The dashed lines and the shaded bands are the expected limits and their $\pm1\sigma$ uncertainties. The thick solid lines are the observed limits for the central value of the signal cross-section. The expected and observed limits do not include the effect of the theoretical uncertainties in the signal cross-section. The dotted lines show the effect on the observed limit when varying the signal cross-section by $\pm1\sigma$ of the theoretical uncertainty.
Exclusion limit contour (95% CL) for a simplified model assuming $\tilde{t}_1$ pair production, decaying via $\tilde{t}_1 \rightarrow t^{(*)}\tilde{\chi}_1^0$ with 100\% branching ratio, in the (a) $m(\tilde{t}_1)$--$m(\tilde{\chi}_1^0)$ and (b) $m(\tilde{t}_1)$--$\Delta m(\tilde{t}_1,\tilde{\chi}_1^0)$ planes. The dashed lines and the shaded bands are the expected limits and their $\pm1\sigma$ uncertainties. The thick solid lines are the observed limits for the central value of the signal cross-section. The expected and observed limits do not include the effect of the theoretical uncertainties in the signal cross-section. The dotted lines show the effect on the observed limit when varying the signal cross-section by $\pm1\sigma$ of the theoretical uncertainty.
Exclusion limits for (a) $t\bar{t} + \phi $ scalar and (b) $t\bar{t} + a $ pseudoscalar models as a function of the mediator mass for a DM particle mass of $m(\chi)=1$ GeV. The limits are calculated at 95% CL and are expressed in terms of the ratio of the excluded cross-section to the nominal cross-section for a coupling assumption of $g = g_q = g_{\chi} = 1$. The solid (dashed) lines shows the observed (expected) exclusion limits.
Exclusion limits for (a) $t\bar{t} + \phi $ scalar and (b) $t\bar{t} + a $ pseudoscalar models as a function of the mediator mass for a DM particle mass of $m(\chi)=1$ GeV. The limits are calculated at 95% CL and are expressed in terms of the ratio of the excluded cross-section to the nominal cross-section for a coupling assumption of $g = g_q = g_{\chi} = 1$. The solid (dashed) lines shows the observed (expected) exclusion limits.
Exclusion limits for (a) $t\bar{t} + \phi $ scalar and (b) $t\bar{t} + a $ pseudoscalar models as a function of the mediator mass for a DM particle mass of $m(\chi)=1$ GeV. The limits are calculated at 95% CL and are expressed in terms of the ratio of the excluded cross-section to the nominal cross-section for a coupling assumption of $g = g_q = g_{\chi} = 1$. The solid (dashed) lines shows the observed (expected) exclusion limits.
Exclusion limits for (a) $t\bar{t} + \phi $ scalar and (b) $t\bar{t} + a $ pseudoscalar models as a function of the mediator mass for a DM particle mass of $m(\chi)=1$ GeV. The limits are calculated at 95% CL and are expressed in terms of the ratio of the excluded cross-section to the nominal cross-section for a coupling assumption of $g = g_q = g_{\chi} = 1$. The solid (dashed) lines shows the observed (expected) exclusion limits.
Two-body selection. Background fit results for $\mathrm{CR}^{\mathrm{2-body}}_{t\bar{t}}$, $\mathrm{CR}^{\mathrm{2-body}}_{t\bar{t}Z}$, $\mathrm{VR}^{\mathrm{2-body}}_{t\bar{t}, DF}$, $\mathrm{VR}^{\mathrm{2-body}}_{t\bar{t}, SF}$ and $\mathrm{VR}^{\mathrm{2-body}}_{t\bar{t} Z}$. ''Others'' includes contributions from $VVV$, $t\bar{t} t$, $t\bar{t}t\bar{t}$, $t\bar{t} W$, $t\bar{t} WW$, $t\bar{t} WZ$, $t\bar{t} H$, and $tZ$ processes. Combined statistical and systematic uncertainties are given. Entries marked `--' indicate a negligible background contribution (less than 0.001 events). The individual uncertainties can be correlated, and do not necessarily add up in quadrature to the total background uncertainty.
Three-body selection. Background fit results for $\mathrm{CR}^{\mathrm{3-body}}_{t\bar{t}}$, $\mathrm{CR}^{\mathrm{3-body}}_{VV}$, $\mathrm{CR}^{\mathrm{2-body}}_{t\bar{t}Z}$, $\mathrm{VR}^{\mathrm{3-body}}_{VV}$, $\mathrm{VR(1)}^{\mathrm{3-body}}_{t\bar{t}}$ and $\mathrm{VR(2)}^{\mathrm{3-body}}_{t\bar{t}}$. ''Others'' includes contributions from $VVV$, $t\bar{t} t$, $t\bar{t}t\bar{t}$, $t\bar{t} W$, $t\bar{t} WW$, $t\bar{t} WZ$, $t\bar{t} H$, and $tZ$ processes. Combined statistical and systematic uncertainties are given. Entries marked `--' indicate a negligible background contribution (less than 0.001 events). The individual uncertainties can be correlated, and do not necessarily add up in quadrature to the total background uncertainty.
Four-body selection. Background fit results for $\mathrm{CR}^{\mathrm{4-body}}_{t\bar{t}}$,$\mathrm{CR}^{\mathrm{4-body}}_{VV}$, $\mathrm{VR}^{\mathrm{4-body}}_{t\bar{t}}$, $VR^{4-body}_{VV}$ and $\mathrm{VR}^{\mathrm{4-body}}_{VV,lll}$. The ''Others'' category contains the contributions from $VVV$, $t\bar{t} t$, $t\bar{t}t\bar{t}$, $t\bar{t} W$, $t\bar{t} WW$, $t\bar{t} WZ$, $t\bar{t} H$, and $tZ$. Combined statistical and systematic uncertainties are given. Entries marked `--' indicate a negligible background contribution (less than 0.001 events). The individual uncertainties can be correlated, and do not necessarily add up in quadrature to the total background uncertainty.
Two-body selection. Background fit results for the different-flavour leptons binned SRs. The ''Others'' category contains the contributions from $VVV$, $t\bar{t} t$, $t\bar{t}t\bar{t}$, $t\bar{t} W$, $t\bar{t} WW$, $t\bar{t} WZ$, $t\bar{t} H$, and $tZ$. Combined statistical and systematic uncertainties are given. Entries marked `--' indicate a negligible background contribution (less than 0.001 events). The individual uncertainties can be correlated, and do not necessarily add up in quadrature to the total background uncertainty.
Two-body selection. Background fit results for the same-flavour leptons binned SRs. The ''Others'' category contains the contributions from $VVV$, $t\bar{t} t$, $t\bar{t}t\bar{t}$, $t\bar{t} W$, $t\bar{t} WW$, $t\bar{t} WZ$, $t\bar{t} H$, and $tZ$. Combined statistical and systematic uncertainties are given. The individual uncertainties can be correlated, and do not necessarily add up in quadrature to the total background uncertainty.
Three-body selection. Observed event yields and background fit results for the three-body selection SRs. The ''Others'' category contains contributions from $VVV$, $t\bar{t} t$, $t\bar{t}t\bar{t}$, $t\bar{t} W$, $t\bar{t} WW$, $t\bar{t} WZ$, $t\bar{t} H$, and $tZ$. Combined statistical and systematic uncertainties are given. Entries marked `--' indicate a negligible background contribution (less than 0.001 events). The individual uncertainties can be correlated, and do not necessarily add up in quadrature to the total background uncertainty.
Four-body selection. Observed event yields and background fit results for SR$^{\mathrm{4-body}}_{\mathrm{Small}\,\Delta m}$ and SR$^{\mathrm{4-body}}_{\mathrm{Large}\,\Delta m}$. The ''Others'' category contains the contributions from $VVV$, $t\bar{t} t$, $t\bar{t}t\bar{t}$, $t\bar{t} W$, $t\bar{t} WW$, $t\bar{t} WZ$, $t\bar{t} H$, and $tZ$. Combined statistical and systematic uncertainties are given. The individual uncertainties can be correlated, and do not necessarily add up in quadrature to the total background uncertainty.
Exclusion limits contours (95% CL) for a simplified model assuming $\tilde{t}_1$ pair production, decaying via $\tilde{t}_1 \rightarrow t^{(*)}\tilde{\chi}^0_1$ with 100% branching ratio in $\tilde{t}_1--\tilde{\chi}^0_1$ masses planes. The dashed lines and the shaded bands are the expected limit and its $\pm 1\sigma$ uncertainty. The thick solid lines are the observed limits for the central value of the signal cross-section. The expected and observed limits do not include the effect of the theoretical uncertainties in the signal cross-section. The dotted lines show the effect on the observed limit when varying the signal cross-section by $\pm1\sigma$ of the theoretical uncertainty. The exclusion limits contours for the two-body, three-body and four-body selections are respectively shown in blue, green and red.
Exclusion limits contours (95% CL) for a simplified model assuming $\tilde{t}_1$ pair production, decaying via $\tilde{t}_1 \rightarrow t^{(*)}\tilde{\chi}^0_1$ with 100% branching ratio in $\tilde{t}_1--\tilde{\chi}^0_1$ masses planes. The dashed lines and the shaded bands are the expected limit and its $\pm 1\sigma$ uncertainty. The thick solid lines are the observed limits for the central value of the signal cross-section. The expected and observed limits do not include the effect of the theoretical uncertainties in the signal cross-section. The dotted lines show the effect on the observed limit when varying the signal cross-section by $\pm1\sigma$ of the theoretical uncertainty. The exclusion limits contours for the two-body, three-body and four-body selections are respectively shown in blue, green and red.
Exclusion limit contour (95% CL) for a simplified model assuming $\tilde{t}_1$ pair production, decaying via $\tilde{t}_1 \rightarrow t \tilde{\chi}_1^0$ with 100% branching ratio, in $\tilde{t}_1$--$\tilde{\chi}_1^0$ masses plane. The dashed lines and the shaded bands are the expected limit and its $\pm1\sigma$ uncertainty. The thick solid lines are the observed limits for the central value of the signal cross-section. The expected and observed limits do not include the effect of the theoretical uncertainties in the signal cross-section. The dotted lines show the effect on the observed limit when varying the signal cross-section by $\pm1\sigma$ of the theoretical uncertainty. The observed (a) and expected (b) CLs values are respectively shown.
Exclusion limit contour (95% CL) for a simplified model assuming $\tilde{t}_1$ pair production, decaying via $\tilde{t}_1 \rightarrow t \tilde{\chi}_1^0$ with 100% branching ratio, in $\tilde{t}_1$--$\tilde{\chi}_1^0$ masses plane. The dashed lines and the shaded bands are the expected limit and its $\pm1\sigma$ uncertainty. The thick solid lines are the observed limits for the central value of the signal cross-section. The expected and observed limits do not include the effect of the theoretical uncertainties in the signal cross-section. The dotted lines show the effect on the observed limit when varying the signal cross-section by $\pm1\sigma$ of the theoretical uncertainty. The observed (a) and expected (b) CLs values are respectively shown.
Exclusion limit contour (95% CL) for a simplified model assuming $\tilde{t}_1$ pair production, decaying via $\tilde{t}_1 \rightarrow t \tilde{\chi}_1^0$ with 100% branching ratio, in $\tilde{t}_1$--$\tilde{\chi}_1^0$ masses plane. The dashed lines and the shaded bands are the expected limit and its $\pm1\sigma$ uncertainty. The thick solid lines are the observed limits for the central value of the signal cross-section. The expected and observed limits do not include the effect of the theoretical uncertainties in the signal cross-section. The dotted lines show the effect on the observed limit when varying the signal cross-section by $\pm1\sigma$ of the theoretical uncertainty. The observed (a) and expected (b) CLs values are respectively shown.
Exclusion limit contour (95% CL) for a simplified model assuming $\tilde{t}_1$ pair production, decaying via $\tilde{t}_1 \rightarrow t \tilde{\chi}_1^0$ with 100% branching ratio, in $\tilde{t}_1$--$\tilde{\chi}_1^0$ masses plane. The dashed lines and the shaded bands are the expected limit and its $\pm1\sigma$ uncertainty. The thick solid lines are the observed limits for the central value of the signal cross-section. The expected and observed limits do not include the effect of the theoretical uncertainties in the signal cross-section. The dotted lines show the effect on the observed limit when varying the signal cross-section by $\pm1\sigma$ of the theoretical uncertainty. The observed (a) and expected (b) CLs values are respectively shown.
Exclusion limit contour (95% CL) for a simplified model assuming $\tilde{t}_1$ pair production, decaying via $\tilde{t}_1 \rightarrow b W \tilde{\chi}_1^0$ with 100% branching ratio, in $\tilde{t}_1$--$\tilde{\chi}_1^0$ masses plane. The dashed lines and the shaded bands are the expected limit and its $\pm1\sigma$ uncertainty. The thick solid lines are the observed limits for the central value of the signal cross-section. The expected and observed limits do not include the effect of the theoretical uncertainties in the signal cross-section. The dotted lines show the effect on the observed limit when varying the signal cross-section by $\pm1\sigma$ of the theoretical uncertainty. The observed (a) and expected (b) CLs values are respectively shown.
Exclusion limit contour (95% CL) for a simplified model assuming $\tilde{t}_1$ pair production, decaying via $\tilde{t}_1 \rightarrow b W \tilde{\chi}_1^0$ with 100% branching ratio, in $\tilde{t}_1$--$\tilde{\chi}_1^0$ masses plane. The dashed lines and the shaded bands are the expected limit and its $\pm1\sigma$ uncertainty. The thick solid lines are the observed limits for the central value of the signal cross-section. The expected and observed limits do not include the effect of the theoretical uncertainties in the signal cross-section. The dotted lines show the effect on the observed limit when varying the signal cross-section by $\pm1\sigma$ of the theoretical uncertainty. The observed (a) and expected (b) CLs values are respectively shown.
Exclusion limit contour (95% CL) for a simplified model assuming $\tilde{t}_1$ pair production, decaying via $\tilde{t}_1 \rightarrow b W \tilde{\chi}_1^0$ with 100% branching ratio, in $\tilde{t}_1$--$\tilde{\chi}_1^0$ masses plane. The dashed lines and the shaded bands are the expected limit and its $\pm1\sigma$ uncertainty. The thick solid lines are the observed limits for the central value of the signal cross-section. The expected and observed limits do not include the effect of the theoretical uncertainties in the signal cross-section. The dotted lines show the effect on the observed limit when varying the signal cross-section by $\pm 1\sigma$ of the theoretical uncertainty. The observed (a) and expected (b) CLs values are respectively shown.
Exclusion limit contour (95% CL) for a simplified model assuming $\tilde{t}_1$ pair production, decaying via $\tilde{t}_1 \rightarrow b W \tilde{\chi}_1^0$ with 100% branching ratio, in $\tilde{t}_1$--$\tilde{\chi}_1^0$ masses plane. The dashed lines and the shaded bands are the expected limit and its $\pm1\sigma$ uncertainty. The thick solid lines are the observed limits for the central value of the signal cross-section. The expected and observed limits do not include the effect of the theoretical uncertainties in the signal cross-section. The dotted lines show the effect on the observed limit when varying the signal cross-section by $\pm1\sigma$ of the theoretical uncertainty. The observed (a) and expected (b) CLs values are respectively shown.
Exclusion limit contour (95% CL) for a simplified model assuming $\tilde{t}_1$ pair production, decaying via $\tilde{t}_1 \rightarrow b l \nu \tilde{\chi}_1^0$ with 100% branching ratio, in $\tilde{t}_1$--$\tilde{\chi}_1^0$ masses plane. The dashed lines and the shaded bands are the expected limit and its $\pm1\sigma$ uncertainty. The thick solid lines are the observed limits for the central value of the signal cross-section. The expected and observed limits do not include the effect of the theoretical uncertainties in the signal cross-section. The dotted lines show the effect on the observed limit when varying the signal cross-section by $\pm1\sigma$ of the theoretical uncertainty. The observed (a) and expected (b) CLs values are respectively shown.
Exclusion limit contour (95% CL) for a simplified model assuming $\tilde{t}_1$ pair production, decaying via $\tilde{t}_1 \rightarrow b l \nu \tilde{\chi}_1^0$ with 100% branching ratio, in $\tilde{t}_1$--$\tilde{\chi}_1^0$ masses plane. The dashed lines and the shaded bands are the expected limit and its $\pm1\sigma$ uncertainty. The thick solid lines are the observed limits for the central value of the signal cross-section. The expected and observed limits do not include the effect of the theoretical uncertainties in the signal cross-section. The dotted lines show the effect on the observed limit when varying the signal cross-section by $\pm1\sigma$ of the theoretical uncertainty. The observed (a) and expected (b) CLs values are respectively shown.
Exclusion limit contour (95% CL) for a simplified model assuming $\tilde{t}_1$ pair production, decaying via $\tilde{t}_1 \rightarrow b l \nu \tilde{\chi}_1^0$ with 100% branching ratio, in $\tilde{t}_1$--$\tilde{\chi}_1^0$ masses plane. The dashed lines and the shaded bands are the expected limit and its $\pm1\sigma$ uncertainty.The thick solid lines are the observed limits for the central value of the signal cross-section. The expected and observed limits do not include the effect of the theoretical uncertainties in the signal cross-section. The dotted lines show the effect on the observed limit when varying the signal cross-section by $\pm1\sigma$ of the theoretical uncertainty. The observed (a) and expected (b) CLs values are respectively shown.
Exclusion limit contour (95% CL) for a simplified model assuming $\tilde{t}_1$ pair production, decaying via $\tilde{t}_1 \rightarrow b l \nu \tilde{\chi}_1^0$ with 100% branching ratio, in $\tilde{t}_1$--$\tilde{\chi}_1^0$ masses plane. The dashed lines and the shaded bands are the expected limit and its $\pm1\sigma$ uncertainty.The thick solid lines are the observed limits for the central value of the signal cross-section. The expected and observed limits do not include the effect of the theoretical uncertainties in the signal cross-section. The dotted lines show the effect on the observed limit when varying the signal cross-section by $\pm1\sigma$ of the theoretical uncertainty. The observed (a) and expected (b) CLs values are respectively shown.
Exclusion limits for (a) $t\bar{t} + \phi $ scalar and (b) $t\bar{t} + a $ pseudoscalar models as a function of the DM particle mass for a mediator mass of 10 GeV. The limits are calculated at 95% CL and are expressed in terms of the ratio of the excluded cross-section to the nominal cross-section for a coupling assumption of $g = g_q = g_{\chi} = 1$. The solid (dashed) lines shows the observed (expected) exclusion limits.
Exclusion limits for (a) $t\bar{t} + \phi $ scalar and (b) $t\bar{t} + a $ pseudoscalar models as a function of the DM particle mass for a mediator mass of 10 GeV. The limits are calculated at 95% CL and are expressed in terms of the ratio of the excluded cross-section to the nominal cross-section for a coupling assumption of $g = g_q = g_{\chi} = 1$. The solid (dashed) lines shows the observed (expected) exclusion limits.
Exclusion limits for (a) $t\bar{t} + \phi $ scalar and (b) $t\bar{t} + a $ pseudoscalar models as a function of the DM particle mass for a mediator mass of 10 GeV. The limits are calculated at 95% CL and are expressed in terms of the ratio of the excluded cross-section to the nominal cross-section for a coupling assumption of $g = g_q = g_{\chi} = 1$. The solid (dashed) lines shows the observed (expected) exclusion limits.
Exclusion limits for (a) $t\bar{t} + \phi $ scalar and (b) $t\bar{t} + a $ pseudoscalar models as a function of the DM particle mass for a mediator mass of 10 GeV. The limits are calculated at 95% CL and are expressed in terms of the ratio of the excluded cross-section to the nominal cross-section for a coupling assumption of $g = g_q = g_{\chi} = 1$. The solid (dashed) lines shows the observed (expected) exclusion limits.
Two-body selection efficiency (a) SR-DF$^{2-body}_{[110,120)}$, (b) SR-DF1$^{2-body}_{[120,140)}$, (c) SR-DF2$^{2-body}_{[140,160)}$, (d) SR-DF3$^{2-body}_{[160,180)}$, (e) SR-DF4$^{2-body}_{[180,220)}$, (f) SR-DF5$^{2-body}_{[220,\infty)}$ for a simplified model assuming $ \tilde{t}_1$ pair production.
Two-body selection efficiency (a) SR-DF$^{2-body}_{[110,120)}$, (b) SR-DF1$^{2-body}_{[120,140)}$, (c) SR-DF2$^{2-body}_{[140,160)}$, (d) SR-DF3$^{2-body}_{[160,180)}$, (e) SR-DF4$^{2-body}_{[180,220)}$, (f) SR-DF5$^{2-body}_{[220,\infty)}$ for a simplified model assuming $ \tilde{t}_1$ pair production.
Two-body selection efficiency (a) SR-DF$^{2-body}_{[110,120)}$, (b) SR-DF1$^{2-body}_{[120,140)}$, (c) SR-DF2$^{2-body}_{[140,160)}$, (d) SR-DF3$^{2-body}_{[160,180)}$, (e) SR-DF4$^{2-body}_{[180,220)}$, (f) SR-DF5$^{2-body}_{[220,\infty)}$ for a simplified model assuming $ \tilde{t}_1$ pair production.
Two-body selection efficiency (a) SR-DF$^{2-body}_{[110,120)}$, (b) SR-DF1$^{2-body}_{[120,140)}$, (c) SR-DF2$^{2-body}_{[140,160)}$, (d) SR-DF3$^{2-body}_{[160,180)}$, (e) SR-DF4$^{2-body}_{[180,220)}$, (f) SR-DF5$^{2-body}_{[220,\infty)}$ for a simplified model assuming $ \tilde{t}_1$ pair production.
Two-body selection efficiency (a) SR-DF$^{2-body}_{[110,120)}$, (b) SR-DF1$^{2-body}_{[120,140)}$, (c) SR-DF2$^{2-body}_{[140,160)}$, (d) SR-DF3$^{2-body}_{[160,180)}$, (e) SR-DF4$^{2-body}_{[180,220)}$, (f) SR-DF5$^{2-body}_{[220,\infty)}$ for a simplified model assuming $ \tilde{t}_1$ pair production.
Two-body selection efficiency (a) SR-DF$^{2-body}_{[110,120)}$, (b) SR-DF1$^{2-body}_{[120,140)}$, (c) SR-DF2$^{2-body}_{[140,160)}$, (d) SR-DF3$^{2-body}_{[160,180)}$, (e) SR-DF4$^{2-body}_{[180,220)}$, (f) SR-DF5$^{2-body}_{[220,\infty)}$ for a simplified model assuming $ \tilde{t}_1$ pair production.
Two-body selection efficiency (a) SR-SF$^{2-body}_{[110,120)}$, (b) SR-SF1$^{2-body}_{[120,140)}$, (c) SR-SF2$^{2-body}_{[140,160)}$, (d) SR-SF3$^{2-body}_{[160,180)}$, (e) SR-SF4$^{2-body}_{[180,220)}$, (f) SR-SF5$^{2-body}_{[220,\infty)}$ for a simplified model assuming $ \tilde{t}_1$ pair production.
Two-body selection efficiency (a) SR-SF$^{2-body}_{[110,120)}$, (b) SR-SF1$^{2-body}_{[120,140)}$, (c) SR-SF2$^{2-body}_{[140,160)}$, (d) SR-SF3$^{2-body}_{[160,180)}$, (e) SR-SF4$^{2-body}_{[180,220)}$, (f) SR-SF5$^{2-body}_{[220,\infty)}$ for a simplified model assuming $ \tilde{t}_1$ pair production.
Two-body selection efficiency (a) SR-SF$^{2-body}_{[110,120)}$, (b) SR-SF1$^{2-body}_{[120,140)}$, (c) SR-SF2$^{2-body}_{[140,160)}$, (d) SR-SF3$^{2-body}_{[160,180)}$, (e) SR-SF4$^{2-body}_{[180,220)}$, (f) SR-SF5$^{2-body}_{[220,\infty)}$ for a simplified model assuming $ \tilde{t}_1$ pair production.
Two-body selection efficiency (a) SR-SF$^{2-body}_{[110,120)}$, (b) SR-SF1$^{2-body}_{[120,140)}$, (c) SR-SF2$^{2-body}_{[140,160)}$, (d) SR-SF3$^{2-body}_{[160,180)}$, (e) SR-SF4$^{2-body}_{[180,220)}$, (f) SR-SF5$^{2-body}_{[220,\infty)}$ for a simplified model assuming $ \tilde{t}_1$ pair production.
Two-body selection efficiency (a) SR-SF$^{2-body}_{[110,120)}$, (b) SR-SF1$^{2-body}_{[120,140)}$, (c) SR-SF2$^{2-body}_{[140,160)}$, (d) SR-SF3$^{2-body}_{[160,180)}$, (e) SR-SF4$^{2-body}_{[180,220)}$, (f) SR-SF5$^{2-body}_{[220,\infty)}$ for a simplified model assuming $ \tilde{t}_1$ pair production.
Two-body selection efficiency (a) SR-SF$^{2-body}_{[110,120)}$, (b) SR-SF1$^{2-body}_{[120,140)}$, (c) SR-SF2$^{2-body}_{[140,160)}$, (d) SR-SF3$^{2-body}_{[160,180)}$, (e) SR-SF4$^{2-body}_{[180,220)}$, (f) SR-SF5$^{2-body}_{[220,\infty)}$ for a simplified model assuming $ \tilde{t}_1$ pair production.
Two-body selection efficiency (a) $SR^{2-body}_{[110,\infty)}$ , (b) $SR^{2-body}_{[120,\infty)}$ , (c) $SR^{2-body}_{[140,\infty)}$ , (d) $SR^{2-body}_{[160,\infty)}$ , (e) $SR^{2-body}_{[180,\infty)}$ , (f) $SR^{2-body}_{[200,\infty)}$ , (g) $SR^{2-body}_{[220,\infty)}$ for a simplified model assuming $ \tilde{t}_1$ pair production.
Two-body selection efficiency (a) $SR^{2-body}_{[110,\infty)}$ , (b) $SR^{2-body}_{[120,\infty)}$ , (c) $SR^{2-body}_{[140,\infty)}$ , (d) $SR^{2-body}_{[160,\infty)}$ , (e) $SR^{2-body}_{[180,\infty)}$ , (f) $SR^{2-body}_{[200,\infty)}$ , (g) $SR^{2-body}_{[220,\infty)}$ for a simplified model assuming $ \tilde{t}_1$ pair production.
Two-body selection efficiency (a) $SR^{2-body}_{[110,\infty)}$ , (b) $SR^{2-body}_{[120,\infty)}$ , (c) $SR^{2-body}_{[140,\infty)}$ , (d) $SR^{2-body}_{[160,\infty)}$ , (e) $SR^{2-body}_{[180,\infty)}$ , (f) $SR^{2-body}_{[200,\infty)}$ , (g) $SR^{2-body}_{[220,\infty)}$ for a simplified model assuming $ \tilde{t}_1$ pair production.
Two-body selection efficiency (a) $SR^{2-body}_{[110,\infty)}$ , (b) $SR^{2-body}_{[120,\infty)}$ , (c) $SR^{2-body}_{[140,\infty)}$ , (d) $SR^{2-body}_{[160,\infty)}$ , (e) $SR^{2-body}_{[180,\infty)}$ , (f) $SR^{2-body}_{[200,\infty)}$ , (g) $SR^{2-body}_{[220,\infty)}$ for a simplified model assuming $ \tilde{t}_1$ pair production.
Two-body selection efficiency (a) $SR^{2-body}_{[110,\infty)}$ , (b) $SR^{2-body}_{[120,\infty)}$ , (c) $SR^{2-body}_{[140,\infty)}$ , (d) $SR^{2-body}_{[160,\infty)}$ , (e) $SR^{2-body}_{[180,\infty)}$ , (f) $SR^{2-body}_{[200,\infty)}$ , (g) $SR^{2-body}_{[220,\infty)}$ for a simplified model assuming $ \tilde{t}_1$ pair production.
Two-body selection efficiency (a) $SR^{2-body}_{[110,\infty)}$ , (b) $SR^{2-body}_{[120,\infty)}$ , (c) $SR^{2-body}_{[140,\infty)}$ , (d) $SR^{2-body}_{[160,\infty)}$ , (e) $SR^{2-body}_{[180,\infty)}$ , (f) $SR^{2-body}_{[200,\infty)}$ , (g) $SR^{2-body}_{[220,\infty)}$ for a simplified model assuming $ \tilde{t}_1$ pair production.
Two-body selection efficiency (a) $SR^{2-body}_{[110,\infty)}$ , (b) $SR^{2-body}_{[120,\infty)}$ , (c) $SR^{2-body}_{[140,\infty)}$ , (d) $SR^{2-body}_{[160,\infty)}$ , (e) $SR^{2-body}_{[180,\infty)}$ , (f) $SR^{2-body}_{[200,\infty)}$ , (g) $SR^{2-body}_{[220,\infty)}$ for a simplified model assuming $ \tilde{t}_1$ pair production.
Two-body selection efficiency (a) SR-DF$^{2-body}_{[110,120)}$, (b) SR-DF1$^{2-body}_{[120,140)}$, (c) SR-DF2$^{2-body}_{[140,160)}$, (d) SR-DF3$^{2-body}_{[160,180)}$, (e) SR-DF4$^{2-body}_{[180,220)}$, (f) SR-DF5$^{2-body}_{[220,\infty)}$ for a simplified model assuming $t \tilde{t} + \phi$ pair production.
Two-body selection efficiency (a) SR-DF$^{2-body}_{[110,120)}$, (b) SR-DF1$^{2-body}_{[120,140)}$, (c) SR-DF2$^{2-body}_{[140,160)}$, (d) SR-DF3$^{2-body}_{[160,180)}$, (e) SR-DF4$^{2-body}_{[180,220)}$, (f) SR-DF5$^{2-body}_{[220,\infty)}$ for a simplified model assuming $t \tilde{t} + \phi$ pair production.
Two-body selection efficiency (a) SR-DF$^{2-body}_{[110,120)}$, (b) SR-DF1$^{2-body}_{[120,140)}$, (c) SR-DF2$^{2-body}_{[140,160)}$, (d) SR-DF3$^{2-body}_{[160,180)}$, (e) SR-DF4$^{2-body}_{[180,220)}$, (f) SR-DF5$^{2-body}_{[220,\infty)}$ for a simplified model assuming $t \tilde{t} + \phi$ pair production.
Two-body selection efficiency (a) SR-DF$^{2-body}_{[110,120)}$, (b) SR-DF1$^{2-body}_{[120,140)}$, (c) SR-DF2$^{2-body}_{[140,160)}$, (d) SR-DF3$^{2-body}_{[160,180)}$, (e) SR-DF4$^{2-body}_{[180,220)}$, (f) SR-DF5$^{2-body}_{[220,\infty)}$ for a simplified model assuming $t \tilde{t} + \phi$ pair production.
Two-body selection efficiency (a) SR-DF$^{2-body}_{[110,120)}$, (b) SR-DF1$^{2-body}_{[120,140)}$, (c) SR-DF2$^{2-body}_{[140,160)}$, (d) SR-DF3$^{2-body}_{[160,180)}$, (e) SR-DF4$^{2-body}_{[180,220)}$, (f) SR-DF5$^{2-body}_{[220,\infty)}$ for a simplified model assuming $t \tilde{t} + \phi$ pair production.
Two-body selection efficiency (a) SR-DF$^{2-body}_{[110,120)}$, (b) SR-DF1$^{2-body}_{[120,140)}$, (c) SR-DF2$^{2-body}_{[140,160)}$, (d) SR-DF3$^{2-body}_{[160,180)}$, (e) SR-DF4$^{2-body}_{[180,220)}$, (f) SR-DF5$^{2-body}_{[220,\infty)}$ for a simplified model assuming $t \tilde{t} + \phi$ pair production.
Two-body selection efficiency (a) SR-SF$^{2-body}_{[110,120)}$, (b) SR-SF1$^{2-body}_{[120,140)}$, (c) SR-SF2$^{2-body}_{[140,160)}$, (d) SR-SF3$^{2-body}_{[160,180)}$, (e) SR-SF4$^{2-body}_{[180,220)}$, (f) SR-SF5$^{2-body}_{[220,\infty)}$ for a simplified model assuming $t \tilde{t} + \phi$ pair production.
Two-body selection efficiency (a) SR-SF$^{2-body}_{[110,120)}$, (b) SR-SF1$^{2-body}_{[120,140)}$, (c) SR-SF2$^{2-body}_{[140,160)}$, (d) SR-SF3$^{2-body}_{[160,180)}$, (e) SR-SF4$^{2-body}_{[180,220)}$, (f) SR-SF5$^{2-body}_{[220,\infty)}$ for a simplified model assuming $t \tilde{t} + \phi$ pair production.
Two-body selection efficiency (a) SR-SF$^{2-body}_{[110,120)}$, (b) SR-SF1$^{2-body}_{[120,140)}$, (c) SR-SF2$^{2-body}_{[140,160)}$, (d) SR-SF3$^{2-body}_{[160,180)}$, (e) SR-SF4$^{2-body}_{[180,220)}$, (f) SR-SF5$^{2-body}_{[220,\infty)}$ for a simplified model assuming $t \tilde{t} + \phi$ pair production.
Two-body selection efficiency (a) SR-SF$^{2-body}_{[110,120)}$, (b) SR-SF1$^{2-body}_{[120,140)}$, (c) SR-SF2$^{2-body}_{[140,160)}$, (d) SR-SF3$^{2-body}_{[160,180)}$, (e) SR-SF4$^{2-body}_{[180,220)}$, (f) SR-SF5$^{2-body}_{[220,\infty)}$ for a simplified model assuming $t \tilde{t} + \phi$ pair production.
Two-body selection efficiency (a) SR-SF$^{2-body}_{[110,120)}$, (b) SR-SF1$^{2-body}_{[120,140)}$, (c) SR-SF2$^{2-body}_{[140,160)}$, (d) SR-SF3$^{2-body}_{[160,180)}$, (e) SR-SF4$^{2-body}_{[180,220)}$, (f) SR-SF5$^{2-body}_{[220,\infty)}$ for a simplified model assuming $t \tilde{t} + \phi$ pair production.
Two-body selection efficiency (a) SR-SF$^{2-body}_{[110,120)}$, (b) SR-SF1$^{2-body}_{[120,140)}$, (c) SR-SF2$^{2-body}_{[140,160)}$, (d) SR-SF3$^{2-body}_{[160,180)}$, (e) SR-SF4$^{2-body}_{[180,220)}$, (f) SR-SF5$^{2-body}_{[220,\infty)}$ for a simplified model assuming $t \tilde{t} + \phi$ pair production.
Two-body selection efficiency (a) $SR^{2-body}_{[110,\infty)}$ , (b) $SR^{2-body}_{[120,\infty)}$ , (c) $SR^{2-body}_{[140,\infty)}$ , (d) $SR^{2-body}_{[160,\infty)}$ , (e) $SR^{2-body}_{[180,\infty)}$ , (f) $SR^{2-body}_{[200,\infty)}$ , (g) $SR^{2-body}_{[220,\infty)}$ for a simplified model assuming $t \tilde{t} + \phi$ pair production.
Two-body selection efficiency (a) $SR^{2-body}_{[110,\infty)}$ , (b) $SR^{2-body}_{[120,\infty)}$ , (c) $SR^{2-body}_{[140,\infty)}$ , (d) $SR^{2-body}_{[160,\infty)}$ , (e) $SR^{2-body}_{[180,\infty)}$ , (f) $SR^{2-body}_{[200,\infty)}$ , (g) $SR^{2-body}_{[220,\infty)}$ for a simplified model assuming $t \tilde{t} + \phi$ pair production.
Two-body selection efficiency (a) $SR^{2-body}_{[110,\infty)}$ , (b) $SR^{2-body}_{[120,\infty)}$ , (c) $SR^{2-body}_{[140,\infty)}$ , (d) $SR^{2-body}_{[160,\infty)}$ , (e) $SR^{2-body}_{[180,\infty)}$ , (f) $SR^{2-body}_{[200,\infty)}$ , (g) $SR^{2-body}_{[220,\infty)}$ for a simplified model assuming $t \tilde{t} + \phi$ pair production.
Two-body selection efficiency (a) $SR^{2-body}_{[110,\infty)}$ , (b) $SR^{2-body}_{[120,\infty)}$ , (c) $SR^{2-body}_{[140,\infty)}$ , (d) $SR^{2-body}_{[160,\infty)}$ , (e) $SR^{2-body}_{[180,\infty)}$ , (f) $SR^{2-body}_{[200,\infty)}$ , (g) $SR^{2-body}_{[220,\infty)}$ for a simplified model assuming $t \tilde{t} + \phi$ pair production.
Two-body selection efficiency (a) $SR^{2-body}_{[110,\infty)}$ , (b) $SR^{2-body}_{[120,\infty)}$ , (c) $SR^{2-body}_{[140,\infty)}$ , (d) $SR^{2-body}_{[160,\infty)}$ , (e) $SR^{2-body}_{[180,\infty)}$ , (f) $SR^{2-body}_{[200,\infty)}$ , (g) $SR^{2-body}_{[220,\infty)}$ for a simplified model assuming $t \tilde{t} + \phi$ pair production.
Two-body selection efficiency (a) $SR^{2-body}_{[110,\infty)}$ , (b) $SR^{2-body}_{[120,\infty)}$ , (c) $SR^{2-body}_{[140,\infty)}$ , (d) $SR^{2-body}_{[160,\infty)}$ , (e) $SR^{2-body}_{[180,\infty)}$ , (f) $SR^{2-body}_{[200,\infty)}$ , (g) $SR^{2-body}_{[220,\infty)}$ for a simplified model assuming $t \tilde{t} + \phi$ pair production.
Two-body selection efficiency (a) $SR^{2-body}_{[110,\infty)}$ , (b) $SR^{2-body}_{[120,\infty)}$ , (c) $SR^{2-body}_{[140,\infty)}$ , (d) $SR^{2-body}_{[160,\infty)}$ , (e) $SR^{2-body}_{[180,\infty)}$ , (f) $SR^{2-body}_{[200,\infty)}$ , (g) $SR^{2-body}_{[220,\infty)}$ for a simplified model assuming $t \tilde{t} + \phi$ pair production.
Two-body selection efficiency (a) SR-DF$^{2-body}_{[110,120)}$, (b) SR-DF1$^{2-body}_{[120,140)}$, (c) SR-DF2$^{2-body}_{[140,160)}$, (d) SR-DF3$^{2-body}_{[160,180)}$, (e) SR-DF4$^{2-body}_{[180,220)}$, (f) SR-DF5$^{2-body}_{[220,\infty)}$ for a simplified model assuming $t \tilde{t} + a$ pair production.
Two-body selection efficiency (a) SR-DF$^{2-body}_{[110,120)}$, (b) SR-DF1$^{2-body}_{[120,140)}$, (c) SR-DF2$^{2-body}_{[140,160)}$, (d) SR-DF3$^{2-body}_{[160,180)}$, (e) SR-DF4$^{2-body}_{[180,220)}$, (f) SR-DF5$^{2-body}_{[220,\infty)}$ for a simplified model assuming $t \tilde{t} + a$ pair production.
Two-body selection efficiency (a) SR-DF$^{2-body}_{[110,120)}$, (b) SR-DF1$^{2-body}_{[120,140)}$, (c) SR-DF2$^{2-body}_{[140,160)}$, (d) SR-DF3$^{2-body}_{[160,180)}$, (e) SR-DF4$^{2-body}_{[180,220)}$, (f) SR-DF5$^{2-body}_{[220,\infty)}$ for a simplified model assuming $t \tilde{t} + a$ pair production.
Two-body selection efficiency (a) SR-DF$^{2-body}_{[110,120)}$, (b) SR-DF1$^{2-body}_{[120,140)}$, (c) SR-DF2$^{2-body}_{[140,160)}$, (d) SR-DF3$^{2-body}_{[160,180)}$, (e) SR-DF4$^{2-body}_{[180,220)}$, (f) SR-DF5$^{2-body}_{[220,\infty)}$ for a simplified model assuming $t \tilde{t} + a$ pair production.
Two-body selection efficiency (a) SR-DF$^{2-body}_{[110,120)}$, (b) SR-DF1$^{2-body}_{[120,140)}$, (c) SR-DF2$^{2-body}_{[140,160)}$, (d) SR-DF3$^{2-body}_{[160,180)}$, (e) SR-DF4$^{2-body}_{[180,220)}$, (f) SR-DF5$^{2-body}_{[220,\infty)}$ for a simplified model assuming $t \tilde{t} + a$ pair production.
Two-body selection efficiency (a) SR-DF$^{2-body}_{[110,120)}$, (b) SR-DF1$^{2-body}_{[120,140)}$, (c) SR-DF2$^{2-body}_{[140,160)}$, (d) SR-DF3$^{2-body}_{[160,180)}$, (e) SR-DF4$^{2-body}_{[180,220)}$, (f) SR-DF5$^{2-body}_{[220,\infty)}$ for a simplified model assuming $t \tilde{t} + a$ pair production.
Two-body selection efficiency (a) SR-SF$^{2-body}_{[110,120)}$, (b) SR-SF1$^{2-body}_{[120,140)}$, (c) SR-SF2$^{2-body}_{[140,160)}$, (d) SR-SF3$^{2-body}_{[160,180)}$, (e) SR-SF4$^{2-body}_{[180,220)}$, (f) SR-SF5$^{2-body}_{[220,\infty)}$ for a simplified model assuming $t \tilde{t} + a$ pair production.
Two-body selection efficiency (a) SR-SF$^{2-body}_{[110,120)}$, (b) SR-SF1$^{2-body}_{[120,140)}$, (c) SR-SF2$^{2-body}_{[140,160)}$, (d) SR-SF3$^{2-body}_{[160,180)}$, (e) SR-SF4$^{2-body}_{[180,220)}$, (f) SR-SF5$^{2-body}_{[220,\infty)}$ for a simplified model assuming $t \tilde{t} + a$ pair production.
Two-body selection efficiency (a) SR-SF$^{2-body}_{[110,120)}$, (b) SR-SF1$^{2-body}_{[120,140)}$, (c) SR-SF2$^{2-body}_{[140,160)}$, (d) SR-SF3$^{2-body}_{[160,180)}$, (e) SR-SF4$^{2-body}_{[180,220)}$, (f) SR-SF5$^{2-body}_{[220,\infty)}$ for a simplified model assuming $t \tilde{t} + a$ pair production.
Two-body selection efficiency (a) SR-SF$^{2-body}_{[110,120)}$, (b) SR-SF1$^{2-body}_{[120,140)}$, (c) SR-SF2$^{2-body}_{[140,160)}$, (d) SR-SF3$^{2-body}_{[160,180)}$, (e) SR-SF4$^{2-body}_{[180,220)}$, (f) SR-SF5$^{2-body}_{[220,\infty)}$ for a simplified model assuming $t \tilde{t} + a$ pair production.
Two-body selection efficiency (a) SR-SF$^{2-body}_{[110,120)}$, (b) SR-SF1$^{2-body}_{[120,140)}$, (c) SR-SF2$^{2-body}_{[140,160)}$, (d) SR-SF3$^{2-body}_{[160,180)}$, (e) SR-SF4$^{2-body}_{[180,220)}$, (f) SR-SF5$^{2-body}_{[220,\infty)}$ for a simplified model assuming $t \tilde{t} + a$ pair production.
Two-body selection efficiency (a) SR-SF$^{2-body}_{[110,120)}$, (b) SR-SF1$^{2-body}_{[120,140)}$, (c) SR-SF2$^{2-body}_{[140,160)}$, (d) SR-SF3$^{2-body}_{[160,180)}$, (e) SR-SF4$^{2-body}_{[180,220)}$, (f) SR-SF5$^{2-body}_{[220,\infty)}$ for a simplified model assuming $t \tilde{t} + a$ pair production.
Two-body selection efficiency (a) $SR^{2-body}_{[110,\infty)}$ , (b) $SR^{2-body}_{[120,\infty)}$ , (c) $SR^{2-body}_{[140,\infty)}$ , (d) $SR^{2-body}_{[160,\infty)}$ , (e) $SR^{2-body}_{[180,\infty)}$ , (f) $SR^{2-body}_{[200,\infty)}$ , (g) $SR^{2-body}_{[220,\infty)}$ for a simplified model assuming $t \tilde{t} + a$ pair production.
Two-body selection efficiency (a) $SR^{2-body}_{[110,\infty)}$ , (b) $SR^{2-body}_{[120,\infty)}$ , (c) $SR^{2-body}_{[140,\infty)}$ , (d) $SR^{2-body}_{[160,\infty)}$ , (e) $SR^{2-body}_{[180,\infty)}$ , (f) $SR^{2-body}_{[200,\infty)}$ , (g) $SR^{2-body}_{[220,\infty)}$ for a simplified model assuming $t \tilde{t} + a$ pair production.
Two-body selection efficiency (a) $SR^{2-body}_{[110,\infty)}$ , (b) $SR^{2-body}_{[120,\infty)}$ , (c) $SR^{2-body}_{[140,\infty)}$ , (d) $SR^{2-body}_{[160,\infty)}$ , (e) $SR^{2-body}_{[180,\infty)}$ , (f) $SR^{2-body}_{[200,\infty)}$ , (g) $SR^{2-body}_{[220,\infty)}$ for a simplified model assuming $t \tilde{t} + a$ pair production.
Two-body selection efficiency (a) $SR^{2-body}_{[110,\infty)}$ , (b) $SR^{2-body}_{[120,\infty)}$ , (c) $SR^{2-body}_{[140,\infty)}$ , (d) $SR^{2-body}_{[160,\infty)}$ , (e) $SR^{2-body}_{[180,\infty)}$ , (f) $SR^{2-body}_{[200,\infty)}$ , (g) $SR^{2-body}_{[220,\infty)}$ for a simplified model assuming $t \tilde{t} + a$ pair production.
Two-body selection efficiency (a) $SR^{2-body}_{[110,\infty)}$ , (b) $SR^{2-body}_{[120,\infty)}$ , (c) $SR^{2-body}_{[140,\infty)}$ , (d) $SR^{2-body}_{[160,\infty)}$ , (e) $SR^{2-body}_{[180,\infty)}$ , (f) $SR^{2-body}_{[200,\infty)}$ , (g) $SR^{2-body}_{[220,\infty)}$ for a simplified model assuming $t \tilde{t} + a$ pair production.
Two-body selection efficiency (a) $SR^{2-body}_{[110,\infty)}$ , (b) $SR^{2-body}_{[120,\infty)}$ , (c) $SR^{2-body}_{[140,\infty)}$ , (d) $SR^{2-body}_{[160,\infty)}$ , (e) $SR^{2-body}_{[180,\infty)}$ , (f) $SR^{2-body}_{[200,\infty)}$ , (g) $SR^{2-body}_{[220,\infty)}$ for a simplified model assuming $t \tilde{t} + a$ pair production.
Two-body selection efficiency (a) $SR^{2-body}_{[110,\infty)}$ , (b) $SR^{2-body}_{[120,\infty)}$ , (c) $SR^{2-body}_{[140,\infty)}$ , (d) $SR^{2-body}_{[160,\infty)}$ , (e) $SR^{2-body}_{[180,\infty)}$ , (f) $SR^{2-body}_{[200,\infty)}$ , (g) $SR^{2-body}_{[220,\infty)}$ for a simplified model assuming $t \tilde{t} + a$ pair production.
Three-body selection efficiency (a) SR-DF$^{3-body}_{t}$, (b) SR-SF$^{3-body}_{t}$, (c) SR-DF$^{3-body}_{W}$, (d) SR-SF$^{3-body}_{W}$ for a simplified model assuming $ \tilde{t}_1$ pair production.
Three-body selection efficiency (a) SR-DF$^{3-body}_{t}$, (b) SR-SF$^{3-body}_{t}$, (c) SR-DF$^{3-body}_{W}$, (d) SR-SF$^{3-body}_{W}$ for a simplified model assuming $ \tilde{t}_1$ pair production.
Three-body selection efficiency (a) SR-DF$^{3-body}_{t}$, (b) SR-SF$^{3-body}_{t}$, (c) SR-DF$^{3-body}_{W}$, (d) SR-SF$^{3-body}_{W}$ for a simplified model assuming $ \tilde{t}_1$ pair production.
Three-body selection efficiency (a) SR-DF$^{3-body}_{t}$, (b) SR-SF$^{3-body}_{t}$, (c) SR-DF$^{3-body}_{W}$, (d) SR-SF$^{3-body}_{W}$ for a simplified model assuming $ \tilde{t}_1$ pair production.
Four-body selection Efficiency (a) SR$^{4-body}_{Small \Delta m}$ , (b) $SR^{4-body}_{Large \Delta m}$ for a simplified model assuming $\tilde{t}_1$ pair production.
Four-body selection Efficiency (a) SR$^{4-body}_{Small \Delta m}$ , (b) $SR^{4-body}_{Large \Delta\ m}$ for a simplified model assuming $\tilde{t}_1$ pair production.
Two-body selection acceptance (a) SR-DF$^{2-body}_{[110,120)}$, (b) SR-DF1$^{2-body}_{[120,140)}$, (c) SR-DF2$^{2-body}_{[140,160)}$, (d) SR-DF3$^{2-body}_{[160,180)}$, (e) SR-DF4$^{2-body}_{[180,220)}$, (f) SR-DF5$^{2-body}_{[220,\infty)}$ for a simplified model assuming $ \tilde{t}_1$ pair production.
Two-body selection acceptance (a) SR-DF$^{2-body}_{[110,120)}$, (b) SR-DF1$^{2-body}_{[120,140)}$, (c) SR-DF2$^{2-body}_{[140,160)}$, (d) SR-DF3$^{2-body}_{[160,180)}$, (e) SR-DF4$^{2-body}_{[180,220)}$, (f) SR-DF5$^{2-body}_{[220,\infty)}$ for a simplified model assuming $ \tilde{t}_1$ pair production.
Two-body selection acceptance (a) SR-DF$^{2-body}_{[110,120)}$, (b) SR-DF1$^{2-body}_{[120,140)}$, (c) SR-DF2$^{2-body}_{[140,160)}$, (d) SR-DF3$^{2-body}_{[160,180)}$, (e) SR-DF4$^{2-body}_{[180,220)}$, (f) SR-DF5$^{2-body}_{[220,\infty)}$ for a simplified model assuming $ \tilde{t}_1$ pair production.
Two-body selection acceptance (a) SR-DF$^{2-body}_{[110,120)}$, (b) SR-DF1$^{2-body}_{[120,140)}$, (c) SR-DF2$^{2-body}_{[140,160)}$, (d) SR-DF3$^{2-body}_{[160,180)}$, (e) SR-DF4$^{2-body}_{[180,220)}$, (f) SR-DF5$^{2-body}_{[220,\infty)}$ for a simplified model assuming $ \tilde{t}_1$ pair production.
Two-body selection acceptance (a) SR-DF$^{2-body}_{[110,120)}$, (b) SR-DF1$^{2-body}_{[120,140)}$, (c) SR-DF2$^{2-body}_{[140,160)}$, (d) SR-DF3$^{2-body}_{[160,180)}$, (e) SR-DF4$^{2-body}_{[180,220)}$, (f) SR-DF5$^{2-body}_{[220,\infty)}$ for a simplified model assuming $ \tilde{t}_1$ pair production.
Two-body selection acceptance (a) SR-DF$^{2-body}_{[110,120)}$, (b) SR-DF1$^{2-body}_{[120,140)}$, (c) SR-DF2$^{2-body}_{[140,160)}$, (d) SR-DF3$^{2-body}_{[160,180)}$, (e) SR-DF4$^{2-body}_{[180,220)}$, (f) SR-DF5$^{2-body}_{[220,\infty)}$ for a simplified model assuming $ \tilde{t}_1$ pair production.
Two-body selection acceptance (a) SR-SF$^{2-body}_{[110,120)}$, (b) SR-SF1$^{2-body}_{[120,140)}$, (c) SR-SF2$^{2-body}_{[140,160)}$, (d) SR-SF3$^{2-body}_{[160,180)}$, (e) SR-SF4$^{2-body}_{[180,220)}$, (f) SR-SF5$^{2-body}_{[220,\infty)}$ for a simplified model assuming $ \tilde{t}_1$ pair production.
Two-body selection acceptance (a) SR-SF$^{2-body}_{[110,120)}$, (b) SR-SF1$^{2-body}_{[120,140)}$, (c) SR-SF2$^{2-body}_{[140,160)}$, (d) SR-SF3$^{2-body}_{[160,180)}$, (e) SR-SF4$^{2-body}_{[180,220)}$, (f) SR-SF5$^{2-body}_{[220,\infty)}$ for a simplified model assuming $ \tilde{t}_1$ pair production.
Two-body selection acceptance (a) SR-SF$^{2-body}_{[110,120)}$, (b) SR-SF1$^{2-body}_{[120,140)}$, (c) SR-SF2$^{2-body}_{[140,160)}$, (d) SR-SF3$^{2-body}_{[160,180)}$, (e) SR-SF4$^{2-body}_{[180,220)}$, (f) SR-SF5$^{2-body}_{[220,\infty)}$ for a simplified model assuming $ \tilde{t}_1$ pair production.
Two-body selection acceptance (a) SR-SF$^{2-body}_{[110,120)}$, (b) SR-SF1$^{2-body}_{[120,140)}$, (c) SR-SF2$^{2-body}_{[140,160)}$, (d) SR-SF3$^{2-body}_{[160,180)}$, (e) SR-SF4$^{2-body}_{[180,220)}$, (f) SR-SF5$^{2-body}_{[220,\infty)}$ for a simplified model assuming $ \tilde{t}_1$ pair production.
Two-body selection acceptance (a) SR-SF$^{2-body}_{[110,120)}$, (b) SR-SF1$^{2-body}_{[120,140)}$, (c) SR-SF2$^{2-body}_{[140,160)}$, (d) SR-SF3$^{2-body}_{[160,180)}$, (e) SR-SF4$^{2-body}_{[180,220)}$, (f) SR-SF5$^{2-body}_{[220,\infty)}$ for a simplified model assuming $ \tilde{t}_1$ pair production.
Two-body selection acceptance (a) SR-SF$^{2-body}_{[110,120)}$, (b) SR-SF1$^{2-body}_{[120,140)}$, (c) SR-SF2$^{2-body}_{[140,160)}$, (d) SR-SF3$^{2-body}_{[160,180)}$, (e) SR-SF4$^{2-body}_{[180,220)}$, (f) SR-SF5$^{2-body}_{[220,\infty)}$ for a simplified model assuming $ \tilde{t}_1$ pair production.
Two-body selection acceptance (a) $SR^{2-body}_{[110,\infty)}$ , (b) $SR^{2-body}_{[120,\infty)}$ , (c) $SR^{2-body}_{[140,\infty)}$ , (d) $SR^{2-body}_{[160,\infty)}$ , (e) $SR^{2-body}_{[180,\infty)}$ , (f) $SR^{2-body}_{[200,\infty)}$ , (g) $SR^{2-body}_{[220,\infty)}$ for a simplified model assuming $ \tilde{t}_1$ pair production.
Two-body selection acceptance (a) $SR^{2-body}_{[110,\infty)}$ , (b) $SR^{2-body}_{[120,\infty)}$ , (c) $SR^{2-body}_{[140,\infty)}$ , (d) $SR^{2-body}_{[160,\infty)}$ , (e) $SR^{2-body}_{[180,\infty)}$ , (f) $SR^{2-body}_{[200,\infty)}$ , (g) $SR^{2-body}_{[220,\infty)}$ for a simplified model assuming $ \tilde{t}_1$ pair production.
Two-body selection acceptance (a) $SR^{2-body}_{[110,\infty)}$ , (b) $SR^{2-body}_{[120,\infty)}$ , (c) $SR^{2-body}_{[140,\infty)}$ , (d) $SR^{2-body}_{[160,\infty)}$ , (e) $SR^{2-body}_{[180,\infty)}$ , (f) $SR^{2-body}_{[200,\infty)}$ , (g) $SR^{2-body}_{[220,\infty)}$ for a simplified model assuming $ \tilde{t}_1$ pair production.
Two-body selection acceptance (a) $SR^{2-body}_{[110,\infty)}$ , (b) $SR^{2-body}_{[120,\infty)}$ , (c) $SR^{2-body}_{[140,\infty)}$ , (d) $SR^{2-body}_{[160,\infty)}$ , (e) $SR^{2-body}_{[180,\infty)}$ , (f) $SR^{2-body}_{[200,\infty)}$ , (g) $SR^{2-body}_{[220,\infty)}$ for a simplified model assuming $ \tilde{t}_1$ pair production.
Two-body selection acceptance (a) $SR^{2-body}_{[110,\infty)}$ , (b) $SR^{2-body}_{[120,\infty)}$ , (c) $SR^{2-body}_{[140,\infty)}$ , (d) $SR^{2-body}_{[160,\infty)}$ , (e) $SR^{2-body}_{[180,\infty)}$ , (f) $SR^{2-body}_{[200,\infty)}$ , (g) $SR^{2-body}_{[220,\infty)}$ for a simplified model assuming $ \tilde{t}_1$ pair production.
Two-body selection acceptance (a) $SR^{2-body}_{[110,\infty)}$ , (b) $SR^{2-body}_{[120,\infty)}$ , (c) $SR^{2-body}_{[140,\infty)}$ , (d) $SR^{2-body}_{[160,\infty)}$ , (e) $SR^{2-body}_{[180,\infty)}$ , (f) $SR^{2-body}_{[200,\infty)}$ , (g) $SR^{2-body}_{[220,\infty)}$ for a simplified model assuming $ \tilde{t}_1$ pair production.
Two-body selection acceptance (a) $SR^{2-body}_{[110,\infty)}$ , (b) $SR^{2-body}_{[120,\infty)}$ , (c) $SR^{2-body}_{[140,\infty)}$ , (d) $SR^{2-body}_{[160,\infty)}$ , (e) $SR^{2-body}_{[180,\infty)}$ , (f) $SR^{2-body}_{[200,\infty)}$ , (g) $SR^{2-body}_{[220,\infty)}$ for a simplified model assuming $ \tilde{t}_1$ pair production.
Two-body selection acceptance (a) SR-DF$^{2-body}_{[110,120)}$, (b) SR-DF1$^{2-body}_{[120,140)}$, (c) SR-DF2$^{2-body}_{[140,160)}$, (d) SR-DF3$^{2-body}_{[160,180)}$, (e) SR-DF4$^{2-body}_{[180,220)}$, (f) SR-DF5$^{2-body}_{[220,\infty)}$ for a simplified model assuming $t \tilde{t} + \phi$ pair production.
Two-body selection acceptance (a) SR-DF$^{2-body}_{[110,120)}$, (b) SR-DF1$^{2-body}_{[120,140)}$, (c) SR-DF2$^{2-body}_{[140,160)}$, (d) SR-DF3$^{2-body}_{[160,180)}$, (e) SR-DF4$^{2-body}_{[180,220)}$, (f) SR-DF5$^{2-body}_{[220,\infty)}$ for a simplified model assuming $t \tilde{t} + \phi$ pair production.
Two-body selection acceptance (a) SR-DF$^{2-body}_{[110,120)}$, (b) SR-DF1$^{2-body}_{[120,140)}$, (c) SR-DF2$^{2-body}_{[140,160)}$, (d) SR-DF3$^{2-body}_{[160,180)}$, (e) SR-DF4$^{2-body}_{[180,220)}$, (f) SR-DF5$^{2-body}_{[220,\infty)}$ for a simplified model assuming $t \tilde{t} + \phi$ pair production.
Two-body selection acceptance (a) SR-DF$^{2-body}_{[110,120)}$, (b) SR-DF1$^{2-body}_{[120,140)}$, (c) SR-DF2$^{2-body}_{[140,160)}$, (d) SR-DF3$^{2-body}_{[160,180)}$, (e) SR-DF4$^{2-body}_{[180,220)}$, (f) SR-DF5$^{2-body}_{[220,\infty)}$ for a simplified model assuming $t \tilde{t} + \phi$ pair production.
Two-body selection acceptance (a) SR-DF$^{2-body}_{[110,120)}$, (b) SR-DF1$^{2-body}_{[120,140)}$, (c) SR-DF2$^{2-body}_{[140,160)}$, (d) SR-DF3$^{2-body}_{[160,180)}$, (e) SR-DF4$^{2-body}_{[180,220)}$, (f) SR-DF5$^{2-body}_{[220,\infty)}$ for a simplified model assuming $t \tilde{t} + \phi$ pair production.
Two-body selection acceptance (a) SR-DF$^{2-body}_{[110,120)}$, (b) SR-DF1$^{2-body}_{[120,140)}$, (c) SR-DF2$^{2-body}_{[140,160)}$, (d) SR-DF3$^{2-body}_{[160,180)}$, (e) SR-DF4$^{2-body}_{[180,220)}$, (f) SR-DF5$^{2-body}_{[220,\infty)}$ for a simplified model assuming $t \tilde{t} + \phi$ pair production.
Two-body selection acceptance (a) SR-SF$^{2-body}_{[110,120)}$, (b) SR-SF1$^{2-body}_{[120,140)}$, (c) SR-SF2$^{2-body}_{[140,160)}$, (d) SR-SF3$^{2-body}_{[160,180)}$, (e) SR-SF4$^{2-body}_{[180,220)}$, (f) SR-SF5$^{2-body}_{[220,\infty)}$ for a simplified model assuming $t \tilde{t} +\phi$ pair production.
Two-body selection acceptance (a) SR-SF$^{2-body}_{[110,120)}$, (b) SR-SF1$^{2-body}_{[120,140)}$, (c) SR-SF2$^{2-body}_{[140,160)}$, (d) SR-SF3$^{2-body}_{[160,180)}$, (e) SR-SF4$^{2-body}_{[180,220)}$, (f) SR-SF5$^{2-body}_{[220,\infty)}$ for a simplified model assuming $ t \tilde{t} +\phi$ pair production.
Two-body selection acceptance (a) SR-SF$^{2-body}_{[110,120)}$, (b) SR-SF1$^{2-body}_{[120,140)}$, (c) SR-SF2$^{2-body}_{[140,160)}$, (d) SR-SF3$^{2-body}_{[160,180)}$, (e) SR-SF4$^{2-body}_{[180,220)}$, (f) SR-SF5$^{2-body}_{[220,\infty)}$ for a simplified model assuming $ t \tilde{t} +\phi$ pair production.
Two-body selection acceptance (a) SR-SF$^{2-body}_{[110,120)}$, (b) SR-SF1$^{2-body}_{[120,140)}$, (c) SR-SF2$^{2-body}_{[140,160)}$, (d) SR-SF3$^{2-body}_{[160,180)}$, (e) SR-SF4$^{2-body}_{[180,220)}$, (f) SR-SF5$^{2-body}_{[220,\infty)}$ for a simplified model assuming $ t \tilde{t} +\phi$ pair production.
Two-body selection acceptance (a) SR-SF$^{2-body}_{[110,120)}$, (b) SR-SF1$^{2-body}_{[120,140)}$, (c) SR-SF2$^{2-body}_{[140,160)}$, (d) SR-SF3$^{2-body}_{[160,180)}$, (e) SR-SF4$^{2-body}_{[180,220)}$, (f) SR-SF5$^{2-body}_{[220,\infty)}$ for a simplified model assuming $ t \tilde{t} +\phi$ pair production.
Two-body selection acceptance (a) SR-SF$^{2-body}_{[110,120)}$, (b) SR-SF1$^{2-body}_{[120,140)}$, (c) SR-SF2$^{2-body}_{[140,160)}$, (d) SR-SF3$^{2-body}_{[160,180)}$, (e) SR-SF4$^{2-body}_{[180,220)}$, (f) SR-SF5$^{2-body}_{[220,\infty)}$ for a simplified model assuming $ t \tilde{t} +\phi$ pair production.
Two-body selection acceptance (a) $SR^{2-body}_{[110,\infty)}$ , (b) $SR^{2-body}_{[120,\infty)}$ , (c) $SR^{2-body}_{[140,\infty)}$ , (d) $SR^{2-body}_{[160,\infty)}$ , (e) $SR^{2-body}_{[180,\infty)}$ , (f) $SR^{2-body}_{[200,\infty)}$ , (g) $SR^{2-body}_{[220,\infty)}$ for a simplified model assuming $t \tilde{t} + \phi$ pair production.
Two-body selection acceptance (a) $SR^{2-body}_{[110,\infty)}$ , (b) $SR^{2-body}_{[120,\infty)}$ , (c) $SR^{2-body}_{[140,\infty)}$ , (d) $SR^{2-body}_{[160,\infty)}$ , (e) $SR^{2-body}_{[180,\infty)}$ , (f) $SR^{2-body}_{[200,\infty)}$ , (g) $SR^{2-body}_{[220,\infty)}$ for a simplified model assuming $t \tilde{t} + \phi$ pair production.
Two-body selection acceptance (a) $SR^{2-body}_{[110,\infty)}$ , (b) $SR^{2-body}_{[120,\infty)}$ , (c) $SR^{2-body}_{[140,\infty)}$ , (d) $SR^{2-body}_{[160,\infty)}$ , (e) $SR^{2-body}_{[180,\infty)}$ , (f) $SR^{2-body}_{[200,\infty)}$ , (g) $SR^{2-body}_{[220,\infty)}$ for a simplified model assuming $t \tilde{t} + \phi$ pair production.
Two-body selection acceptance (a) $SR^{2-body}_{[110,\infty)}$ , (b) $SR^{2-body}_{[120,\infty)}$ , (c) $SR^{2-body}_{[140,\infty)}$ , (d) $SR^{2-body}_{[160,\infty)}$ , (e) $SR^{2-body}_{[180,\infty)}$ , (f) $SR^{2-body}_{[200,\infty)}$ , (g) $SR^{2-body}_{[220,\infty)}$ for a simplified model assuming $t \tilde{t} + \phi$ pair production.
Two-body selection acceptance (a) $SR^{2-body}_{[110,\infty)}$ , (b) $SR^{2-body}_{[120,\infty)}$ , (c) $SR^{2-body}_{[140,\infty)}$ , (d) $SR^{2-body}_{[160,\infty)}$ , (e) $SR^{2-body}_{[180,\infty)}$ , (f) $SR^{2-body}_{[200,\infty)}$ , (g) $SR^{2-body}_{[220,\infty)}$ for a simplified model assuming $t \tilde{t} + \phi$ pair production.
Two-body selection acceptance (a) $SR^{2-body}_{[110,\infty)}$ , (b) $SR^{2-body}_{[120,\infty)}$ , (c) $SR^{2-body}_{[140,\infty)}$ , (d) $SR^{2-body}_{[160,\infty)}$ , (e) $SR^{2-body}_{[180,\infty)}$ , (f) $SR^{2-body}_{[200,\infty)}$ , (g) $SR^{2-body}_{[220,\infty)}$ for a simplified model assuming $t \tilde{t} + \phi$ pair production.
Two-body selection acceptance (a) $SR^{2-body}_{[110,\infty)}$ , (b) $SR^{2-body}_{[120,\infty)}$ , (c) $SR^{2-body}_{[140,\infty)}$ , (d) $SR^{2-body}_{[160,\infty)}$ , (e) $SR^{2-body}_{[180,\infty)}$ , (f) $SR^{2-body}_{[200,\infty)}$ , (g) $SR^{2-body}_{[220,\infty)}$ for a simplified model assuming $t \tilde{t} + \phi$ pair production.
Two-body selection acceptance (a) SR-DF$^{2-body}_{[110,120)}$, (b) SR-DF1$^{2-body}_{[120,140)}$, (c) SR-DF2$^{2-body}_{[140,160)}$, (d) SR-DF3$^{2-body}_{[160,180)}$, (e) SR-DF4$^{2-body}_{[180,220)}$, (f) SR-DF5$^{2-body}_{[220,\infty)}$ for a simplified model assuming $t \tilde{t} + a$ pair production.
Two-body selection acceptance (a) SR-DF$^{2-body}_{[110,120)}$, (b) SR-DF1$^{2-body}_{[120,140)}$, (c) SR-DF2$^{2-body}_{[140,160)}$, (d) SR-DF3$^{2-body}_{[160,180)}$, (e) SR-DF4$^{2-body}_{[180,220)}$, (f) SR-DF5$^{2-body}_{[220,\infty)}$ for a simplified model assuming $t \tilde{t} + a$ pair production.
Two-body selection acceptance (a) SR-DF$^{2-body}_{[110,120)}$, (b) SR-DF1$^{2-body}_{[120,140)}$, (c) SR-DF2$^{2-body}_{[140,160)}$, (d) SR-DF3$^{2-body}_{[160,180)}$, (e) SR-DF4$^{2-body}_{[180,220)}$, (f) SR-DF5$^{2-body}_{[220,\infty)}$ for a simplified model assuming $t \tilde{t} + a$ pair production.
Two-body selection acceptance (a) SR-DF$^{2-body}_{[110,120)}$, (b) SR-DF1$^{2-body}_{[120,140)}$, (c) SR-DF2$^{2-body}_{[140,160)}$, (d) SR-DF3$^{2-body}_{[160,180)}$, (e) SR-DF4$^{2-body}_{[180,220)}$, (f) SR-DF5$^{2-body}_{[220,\infty)}$ for a simplified model assuming $t \tilde{t} + a$ pair production.
Two-body selection acceptance (a) SR-DF$^{2-body}_{[110,120)}$, (b) SR-DF1$^{2-body}_{[120,140)}$, (c) SR-DF2$^{2-body}_{[140,160)}$, (d) SR-DF3$^{2-body}_{[160,180)}$, (e) SR-DF4$^{2-body}_{[180,220)}$, (f) SR-DF5$^{2-body}_{[220,\infty)}$ for a simplified model assuming $t \tilde{t} + a$ pair production.
Two-body selection acceptance (a) SR-DF$^{2-body}_{[110,120)}$, (b) SR-DF1$^{2-body}_{[120,140)}$, (c) SR-DF2$^{2-body}_{[140,160)}$, (d) SR-DF3$^{2-body}_{[160,180)}$, (e) SR-DF4$^{2-body}_{[180,220)}$, (f) SR-DF5$^{2-body}_{[220,\infty)}$ for a simplified model assuming $t \tilde{t} + a$ pair production.
Two-body selection acceptance (a) SR-SF$^{2-body}_{[110,120)}$, (b) SR-SF1$^{2-body}_{[120,140)}$, (c) SR-SF2$^{2-body}_{[140,160)}$, (d) SR-SF3$^{2-body}_{[160,180)}$, (e) SR-SF4$^{2-body}_{[180,220)}$, (f) SR-SF5$^{2-body}_{[220,\infty)}$ for a simplified model assuming t \tilde{t} + a$ pair production.
Two-body selection acceptance (a) SR-SF$^{2-body}_{[110,120)}$, (b) SR-SF1$^{2-body}_{[120,140)}$, (c) SR-SF2$^{2-body}_{[140,160)}$, (d) SR-SF3$^{2-body}_{[160,180)}$, (e) SR-SF4$^{2-body}_{[180,220)}$, (f) SR-SF5$^{2-body}_{[220,\infty)}$ for a simplified model assuming $t \tilde{t} + a$ pair production.
Two-body selection acceptance (a) SR-SF$^{2-body}_{[110,120)}$, (b) SR-SF1$^{2-body}_{[120,140)}$, (c) SR-SF2$^{2-body}_{[140,160)}$, (d) SR-SF3$^{2-body}_{[160,180)}$, (e) SR-SF4$^{2-body}_{[180,220)}$, (f) SR-SF5$^{2-body}_{[220,\infty)}$ for a simplified model assuming $t \tilde{t} + a$ pair production.
Two-body selection acceptance (a) SR-SF$^{2-body}_{[110,120)}$, (b) SR-SF1$^{2-body}_{[120,140)}$, (c) SR-SF2$^{2-body}_{[140,160)}$, (d) SR-SF3$^{2-body}_{[160,180)}$, (e) SR-SF4$^{2-body}_{[180,220)}$, (f) SR-SF5$^{2-body}_{[220,\infty)}$ for a simplified model assuming $t \tilde{t} + a$ pair production.
Two-body selection acceptance (a) SR-SF$^{2-body}_{[110,120)}$, (b) SR-SF1$^{2-body}_{[120,140)}$, (c) SR-SF2$^{2-body}_{[140,160)}$, (d) SR-SF3$^{2-body}_{[160,180)}$, (e) SR-SF4$^{2-body}_{[180,220)}$, (f) SR-SF5$^{2-body}_{[220,\infty)}$ for a simplified model assuming $t \tilde{t} + a$ pair production.
Two-body selection acceptance (a) SR-SF$^{2-body}_{[110,120)}$, (b) SR-SF1$^{2-body}_{[120,140)}$, (c) SR-SF2$^{2-body}_{[140,160)}$, (d) SR-SF3$^{2-body}_{[160,180)}$, (e) SR-SF4$^{2-body}_{[180,220)}$, (f) SR-SF5$^{2-body}_{[220,\infty)}$ for a simplified model assuming $t \tilde{t} + a$ pair production.
Two-body selection acceptance (a) $SR^{2-body}_{[110,\infty)}$ , (b) $SR^{2-body}_{[120,\infty)}$ , (c) $SR^{2-body}_{[140,\infty)}$ , (d) $SR^{2-body}_{[160,\infty)}$ , (e) $SR^{2-body}_{[180,\infty)}$ , (f) $SR^{2-body}_{[200,\infty)}$ , (g) $SR^{2-body}_{[220,\infty)}$ for a simplified model assuming $ \tilde{t}_1$ pair production.
Two-body selection acceptance (a) $SR^{2-body}_{[110,\infty)}$ , (b) $SR^{2-body}_{[120,\infty)}$ , (c) $SR^{2-body}_{[140,\infty)}$ , (d) $SR^{2-body}_{[160,\infty)}$ , (e) $SR^{2-body}_{[180,\infty)}$ , (f) $SR^{2-body}_{[200,\infty)}$ , (g) $SR^{2-body}_{[220,\infty)}$ for a simplified model assuming $ \tilde{t}_1$ pair production.
Two-body selection acceptance (a) $SR^{2-body}_{[110,\infty)}$ , (b) $SR^{2-body}_{[120,\infty)}$ , (c) $SR^{2-body}_{[140,\infty)}$ , (d) $SR^{2-body}_{[160,\infty)}$ , (e) $SR^{2-body}_{[180,\infty)}$ , (f) $SR^{2-body}_{[200,\infty)}$ , (g) $SR^{2-body}_{[220,\infty)}$ for a simplified model assuming $ \tilde{t}_1$ pair production.
Two-body selection acceptance (a) $SR^{2-body}_{[110,\infty)}$ , (b) $SR^{2-body}_{[120,\infty)}$ , (c) $SR^{2-body}_{[140,\infty)}$ , (d) $SR^{2-body}_{[160,\infty)}$ , (e) $SR^{2-body}_{[180,\infty)}$ , (f) $SR^{2-body}_{[200,\infty)}$ , (g) $SR^{2-body}_{[220,\infty)}$ for a simplified model assuming $ \tilde{t}_1$ pair production.
Two-body selection acceptance (a) $SR^{2-body}_{[110,\infty)}$ , (b) $SR^{2-body}_{[120,\infty)}$ , (c) $SR^{2-body}_{[140,\infty)}$ , (d) $SR^{2-body}_{[160,\infty)}$ , (e) $SR^{2-body}_{[180,\infty)}$ , (f) $SR^{2-body}_{[200,\infty)}$ , (g) $SR^{2-body}_{[220,\infty)}$ for a simplified model assuming $ \tilde{t}_1$ pair production.
Two-body selection acceptance (a) $SR^{2-body}_{[110,\infty)}$ , (b) $SR^{2-body}_{[120,\infty)}$ , (c) $SR^{2-body}_{[140,\infty)}$ , (d) $SR^{2-body}_{[160,\infty)}$ , (e) $SR^{2-body}_{[180,\infty)}$ , (f) $SR^{2-body}_{[200,\infty)}$ , (g) $SR^{2-body}_{[220,\infty)}$ for a simplified model assuming $ \tilde{t}_1$ pair production.
Two-body selection acceptance (a) $SR^{2-body}_{[110,\infty)}$ , (b) $SR^{2-body}_{[120,\infty)}$ , (c) $SR^{2-body}_{[140,\infty)}$ , (d) $SR^{2-body}_{[160,\infty)}$ , (e) $SR^{2-body}_{[180,\infty)}$ , (f) $SR^{2-body}_{[200,\infty)}$ , (g) $SR^{2-body}_{[220,\infty)}$ for a simplified model assuming $ \tilde{t}_1$ pair production.
Three-body selection acceptance (a) SR-DF$^{3-body}_{t}$, (b) SR-SF$^{3-body}_{t}$, (c) SR-DF$^{3-body}_{W}$, (d) SR-SF$^{3-body}_{W}$ for a simplified model assuming $ \tilde{t}_1$ pair production.
Three-body selection acceptance (a) SR-DF$^{3-body}_{t}$, (b) SR-SF$^{3-body}_{t}$, (c) SR-DF$^{3-body}_{W}$, (d) SR-SF$^{3-body}_{W}$ for a simplified model assuming $ \tilde{t}_1$ pair production.
Three-body selection acceptance (a) SR-DF$^{3-body}_{t}$, (b) SR-SF$^{3-body}_{t}$, (c) SR-DF$^{3-body}_{W}$, (d) SR-SF$^{3-body}_{W}$ for a simplified model assuming $ \tilde{t}_1$ pair production.
Three-body selection acceptance (a) SR-DF$^{3-body}_{t}$, (b) SR-SF$^{3-body}_{t}$, (c) SR-DF$^{3-body}_{W}$, (d) SR-SF$^{3-body}_{W}$ for a simplified model assuming $ \tilde{t}_1$ pair production.
Four-body selection acceptance (a) SR$^{4-body}_{Small \Delta m}$ , (b) $SR^{4-body}_{Large \Delta m}$ for a simplified model assuming $\tilde{t}_1$ pair production.
Four-body selection acceptance (a) SR$^{4-body}_{Small \Delta m}$ , (b) $SR^{4-body}_{Large \Delta m}$ for a simplified model assuming $\tilde{t}_1$ pair production.
Two-body selection The numbers indicate the observed upper limits on the signal strenght for (a) a simplified model assuming $\tilde{t}_1$ pair production, (b) for $t\tilde{t} + a $ pseudoscalar models, (c) for $t\tilde{t} + \phi $ scalar models. In Figure (a), the red line corresponds to the observed limit.
Two-body selection The numbers indicate the observed upper limits on the signal strenght for (a) a simplified model assuming $\tilde{t}_1$ pair production, (b) for $t\tilde{t} + a $ pseudoscalar models, (c) for $t\tilde{t} + \phi $ scalar models. In Figure (a), the red line corresponds to the observed limit.
Two-body selection The numbers indicate the observed upper limits on the signal strenght for (a) a simplified model assuming $\tilde{t}_1$ pair production, (b) for $t\tilde{t} + a $ pseudoscalar models, (c) for $t\tilde{t} + \phi $ scalar models. In Figure (a), the red line corresponds to the observed limit.
Three-body selection The numbers indicate the upper limits on the signal strenght for a simplified model assuming $\tilde{t}_1$ pair production. For comparison, the red line corresponds to the observed limit.
Four-body selection The numbers indicate the upper limits on the signal strenght for a simplified model assuming $\tilde{t}_1$ pair production. For comparison, the red line corresponds to the observed limit.
Two-body selection The numbers indicate the upper limits on the signal cross-section for (a) a simplified model assuming $\tilde{t}_1$ pair production, (b) for $t\tilde{t} + a $ pseudoscalar models, (c) for $t\tilde{t} + \phi $ scalar models. In Figure (a), the red line corresponds to the observed limit.
Two-body selection The numbers indicate the upper limits on the signal cross-section for (a) a simplified model assuming $\tilde{t}_1$ pair production, (b) for $t\tilde{t} + a $ pseudoscalar models, (c) for $t\tilde{t} + \phi $ scalar models. In Figure (a), the red line corresponds to the observed limit.
Two-body selection The numbers indicate the upper limits on the signal cross-section for (a) a simplified model assuming $\tilde{t}_1$ pair production, (b) for $t\tilde{t} + a $ pseudoscalar models, (c) for $t\tilde{t} + \phi $ scalar models. In Figure (a), the red line corresponds to the observed limit.
Three-body selection The numbers indicate the upper limits on the signal cross-section for a simplified model assuming $\tilde{t}_1$ pair production. For comparison, the red line corresponds to the observed limit.
Four-body selection The numbers indicate the upper limits on the signal cross-section for a simplified model assuming $\tilde{t}_1$ pair production. For comparison, the red line corresponds to the observed limit.
Two-body selection. Background fit results for the $inclusive$ SRs. The Others category contains the contributions from $VVV$, $t\bar{t} t$, $t\bar{t}t\bar{t}$, $t\bar{t} W$, $t\bar{t} WW$, $t\bar{t} WZ$, $t\bar{t} H$, and $tZ$. Combined statistical and systematic uncertainties are given. Note that the individual uncertainties can be correlated, and do not necessarily add up quadratically to the total background uncertainty.
Cut flow for the simplified signal model $\tilde{t}_1 \rightarrow t^{(*)}\tilde{\chi}^0_1$ with $m(\tilde{t}_1)=600~ GeV$ and $m(\tilde{\chi}^0_1)=400~ GeV$ in the SRs for the two-body selection. The number of events is normalized to the cross-section and to an integrated luminosity of $139~fb^{-1}$.
Cut flow for the scalar signal model $t\bar{t} + \phi $ with $m(\phi)=150~ GeV$ and $m(\chi)=1~ GeV$ in the SRs for the two-body selection. The number of events is normalized to the cross-section and to an integrated luminosity of $139~fb^{-1}$.
Cut flow for the pseudoscalar signal model $t\bar{t} + a $ with $m(a)=150~ GeV$ and $m(\chi)=1~ GeV$ in the SRs for the two-body selection. The number of events is normalized to the cross-section and to an integrated luminosity of $139~fb^{-1}$.
Cut flow for the simplified signal model $\tilde{t}_1 \rightarrow bW\tilde{\chi}^0_1$ with $m(\tilde{t}_1)=550~ GeV$ and $m(\tilde{\chi}^0_1)=385~ GeV$ in the SRs for the three-body selection. The number of events is normalized to the cross-section and to an integrated luminosity of $139~fb^{-1}$.
Cut flow for the simplified signal model $\tilde{t}_1 \rightarrow bW\tilde{\chi}^0_1$ with $m(\tilde{t}_1)=550~ GeV$ and $m(\tilde{\chi}^0_1)=400~ GeV$ in the SRs for the three-body selection. The number of events is normalized to the cross-section and to an integrated luminosity of $139~fb^{-1}$.
Cut flow for the simplified signal model $\tilde{t}_1 \rightarrow bW\tilde{\chi}^0_1$ with $m(\tilde{t}_1)=550~ GeV$ and $m(\tilde{\chi}^0_1)=430~ GeV$ in the SRs for the three-body selection. The number of events is normalized to the cross-section and to an integrated luminosity of $139~fb^{-1}$.
Cut flow for the simplified signal model $\tilde{t}_1 \rightarrow bW\tilde{\chi}^0_1$ with $m(\tilde{t}_1)=550~ GeV$ and $m(\tilde{\chi}^0_1)=460~ GeV$ in the SRs for the three-body selection. The number of events is normalized to the cross-section and to an integrated luminosity of $139~fb^{-1}$.
Cut flow for the simplified signal model $\tilde{t}_1 \rightarrow b l \nu \tilde{\chi}^0_1$ with $m(\tilde{t}_1)=400~ GeV$ and $m(\tilde{\chi}^0_1)=380~ GeV$ in the SRs for the four-body selection. The number of events is normalized to the cross-section and to an integrated luminosity of $139~fb^{-1}$.
Cut flow for the simplified signal model $\tilde{t}_1 \rightarrow b l \nu \tilde{\chi}^0_1$ with $m(\tilde{t}_1)=460~ GeV$ and $m(\tilde{\chi}^0_1)=415~ GeV$ in the SRs for the four-body selection. The number of events is normalized to the cross-section and to an integrated luminosity of $139~fb^{-1}$.
Cut flow for the simplified signal model $\tilde{t}_1 \rightarrow b l \nu \tilde{\chi}^0_1$ with $m(\tilde{t}_1)=400~ GeV$ and $m(\tilde{\chi}^0_1)=320~ GeV$ in the SRs for the four-body selection. The number of events is normalized to the cross-section and to an integrated luminosity of $139~fb^{-1}$.
The results of a search for gluino and squark pair production with the pairs decaying via the lightest charginos into a final state consisting of two $W$ bosons, the lightest neutralinos ($\tilde\chi^0_1$), and quarks, are presented. The signal is characterised by the presence of a single charged lepton ($e^{\pm}$ or $\mu^{\pm}$) from a $W$ boson decay, jets, and missing transverse momentum. The analysis is performed using 139 fb$^{-1}$ of proton-proton collision data taken at a centre-of-mass energy $\sqrt{s}=13$ TeV delivered by the Large Hadron Collider and recorded by the ATLAS experiment. No statistically significant excess of events above the Standard Model expectation is found. Limits are set on the direct production of squarks and gluinos in simplified models. Masses of gluino (squark) up to 2.2 TeV (1.4 TeV) are excluded at 95% confidence level for a light $\tilde\chi^0_1$.
Post-fit $m_{T}$ distribution in the SR 2J b-veto N-1 region. N-1 refers to all cuts except for the requirement on $m_T$ being applied. Uncertainties include statistical and systematic uncertainties. The value 9999 is used as a placeholder for infinity.
Post-fit $m_{T}$ distribution in the SR 2J b-tag N-1 region. N-1 refers to all cuts except for the requirement on $m_T$ being applied. Uncertainties include statistical and systematic uncertainties. The value 9999 is used as a placeholder for infinity.
Post-fit $m_{T}$ distribution in the SR 4J b-veto N-1 region. N-1 refers to all cuts except for the requirement on $m_T$ being applied. Uncertainties include statistical and systematic uncertainties. The value 9999 is used as a placeholder for infinity.
Post-fit $m_{T}$ distribution in the SR 4J b-tag N-1 region. N-1 refers to all cuts except for the requirement on $m_T$ being applied. Uncertainties include statistical and systematic uncertainties. The value 9999 is used as a placeholder for infinity.
Post-fit $m_{T}$ distribution in the SR 6J b-veto N-1 region. N-1 refers to all cuts except for the requirement on $m_T$ being applied. Uncertainties include statistical and systematic uncertainties. The value 9999 is used as a placeholder for infinity.
Post-fit $m_{T}$ distribution in the SR 6J b-tag N-1 region. N-1 refers to all cuts except for the requirement on $m_T$ being applied. Uncertainties include statistical and systematic uncertainties. The value 9999 is used as a placeholder for infinity.
Post-fit $m_{eff}$ distribution in the 2J b-tag signal region. Uncertainties include statistical and systematic uncertainties. Including exemplary signal points. The value 9999 is used as a placeholder for infinity.
Post-fit $m_{eff}$ distribution in the 2J b-veto signal region. Uncertainties include statistical and systematic uncertainties. Including exemplary signal points. The value 9999 is used as a placeholder for infinity.
Post-fit $m_{eff}$ distribution in the 4J low-x b-tag signal region. Uncertainties include statistical and systematic uncertainties. Including exemplary signal points. The value 9999 is used as a placeholder for infinity.
Post-fit $m_{eff}$ distribution in the 4J low-x b-veto signal region. Uncertainties include statistical and systematic uncertainties. Including exemplary signal points. The value 9999 is used as a placeholder for infinity.
Post-fit $m_{eff}$ distribution in the 4J high-x b-tag signal region. Uncertainties include statistical and systematic uncertainties. Including exemplary signal points. The value 9999 is used as a placeholder for infinity.
Post-fit $m_{eff}$ distribution in the 4J high-x b-veto signal region. Uncertainties include statistical and systematic uncertainties. Including exemplary signal points. The value 9999 is used as a placeholder for infinity.
Post-fit $m_{eff}$ distribution in the 6J b-tag signal region. Uncertainties include statistical and systematic uncertainties. Including exemplary signal points. The value 9999 is used as a placeholder for infinity.
Post-fit $m_{eff}$ distribution in the 6J b-veto signal region. Uncertainties include statistical and systematic uncertainties. Including exemplary signal points. The value 9999 is used as a placeholder for infinity.
Observed 95% CL exclusion contours for the gluino one-step x = 1/2 model.
Expected 95% CL exclusion contours for the gluino one-step x = 1/2 model. space.
Observed 95% CL exclusion contours for the gluino one-step variable-x
Expected 95% CL exclusion contours for the gluino one-step variable-x
Observed 95% CL exclusion contours for the squark one-step x = 1/2 model.
Observed 95% CL exclusion contours for the squark one-step x = 1/2 model.
Observed 95% CL exclusion contours for one-flavour schemes in one-step x = 1/2 model.
Observed 95% CL exclusion contours for one-flavour schemes in one-step x = 1/2 model.
Expected 95% CL exclusion contours for the squark one-step variable-x
Expected 95% CL exclusion contours for the squark one-step variable-x
Expected 95% CL exclusion contours for the squark one-flavour schemes in variable-x
Expected 95% CL exclusion contours for the squark one-flavour schemes in variable-x
Upper limits on the signal cross section for simplified model gluino one-step x = 1/2
Upper limits on the signal cross section for simplified model gluino one-step variable-x
Upper limits on the signal cross section for simplified model squark one-step x = 1/2
Upper limits on the signal cross section for simplified model squark one-step variable-x
Upper limits on the signal cross section for simplified model squark one-step x=1/2 in one-flavour schemes
Upper limits on the signal cross section for simplified model squark one-step variable-x in one-flavour schemes
Post-fit $m_{eff}$ distribution in the 2J b-tag validation region. Uncertainties include statistical and systematic uncertainties. The value 9999 is used as a placeholder for infinity.
Post-fit $m_{eff}$ distribution in the 2J b-veto validation region. Uncertainties include statistical and systematic uncertainties. The value 9999 is used as a placeholder for infinity.
Post-fit $m_{eff}$ distribution in the 4J b-tag validation region. Uncertainties include statistical and systematic uncertainties. The value 9999 is used as a placeholder for infinity.
Post-fit $m_{eff}$ distribution in the 4J b-veto validation region. Uncertainties include statistical and systematic uncertainties. The value 9999 is used as a placeholder for infinity.
Post-fit $m_{eff}$ distribution in the 6J b-tag validation region. Uncertainties include statistical and systematic uncertainties.
Post-fit $m_{eff}$ distribution in the 6J b-veto validation region. Uncertainties include statistical and systematic uncertainties.
Event selection cutflow for two representative signal samples for the SR2JBT. The gluino, squark, chargino and neutralino masses are reported. Weighted events including statistical uncertainties are shown.
Event selection cutflow for two representative signal samples for the SR2JBV. The gluino, squark, chargino and neutralino masses are reported. Weighted events including statistical uncertainties are shown.
Event selection cutflow for two representative signal samples for the SR4JBT. The gluino, squark, chargino and neutralino masses are reported. Weighted events including statistical uncertainties are shown.
Event selection cutflow for two representative signal samples for the SR4JBV. The gluino, squark, chargino and neutralino masses are reported. Weighted events including statistical uncertainties are shown.
Event selection cutflow for two representative signal samples for the SR6JBT. The gluino, squark, chargino and neutralino masses are reported. Weighted events including statistical uncertainties are shown.
Event selection cutflow for two representative signal samples for the SR6JBV. The gluino, squark, chargino and neutralino masses are reported. Weighted events including statistical uncertainties are shown.
Signal acceptance in SR2J b-Tag bin1 region for gluino production one-step x = 1/2 simplified models
Signal acceptance in SR2J b-Tag bin2 region for gluino production one-step x = 1/2 simplified models
Signal acceptance in SR2J b-Tag bin3 region for gluino production one-step x = 1/2 simplified models
Signal acceptance in SR2J b-Veto bin1 region for gluino production one-step x = 1/2 simplified models
Signal acceptance in SR2J b-Veto bin2 region for gluino production one-step x = 1/2 simplified models
Signal acceptance in SR2J b-Veto bin3 region for gluino production one-step x = 1/2 simplified models
Signal acceptance in SR2J discovery high region for gluino production one-step x = 1/2 simplified models
Signal acceptance in SR2J discovery low region for gluino production one-step x = 1/2 simplified models
Signal acceptance in SR4Jhx discovery region for gluino production one-step x = 1/2 simplified models
Signal acceptance in SR4Jhx b-Tag bin1 region for gluino production one-step x = 1/2 simplified models
Signal acceptance in SR4Jhx b-Tag bin2 region for gluino production one-step x = 1/2 simplified models
Signal acceptance in SR4Jhx b-Tag bin3 region for gluino production one-step x = 1/2 simplified models
Signal acceptance in SR4Jhx b-Veto bin1 region for gluino production one-step x = 1/2 simplified models
Signal acceptance in SR4Jhx b-Veto bin2 region for gluino production one-step x = 1/2 simplified models
Signal acceptance in SR4Jhx b-Veto bin3 region for gluino production one-step x = 1/2 simplified models
Signal acceptance in SR4Jlx discovery region for gluino production one-step x = 1/2 simplified models
Signal acceptance in SR4Jlx b-Tag bin1 region for gluino production one-step x = 1/2 simplified models
Signal acceptance in SR4Jlx b-Tag bin2 region for gluino production one-step x = 1/2 simplified models
Signal acceptance in SR4Jlx b-Tag bin3 region for gluino production one-step x = 1/2 simplified models
Signal acceptance in SR4Jlx b-Veto bin1 region for gluino production one-step x = 1/2 simplified models
Signal acceptance in SR4Jlx b-Veto bin2 region for gluino production one-step x = 1/2 simplified models
Signal acceptance in SR4Jlx b-Veto bin3 region for gluino production one-step x = 1/2 simplified models
Signal acceptance in SR6J b-Tag bin1 region for gluino production one-step x = 1/2 simplified models
Signal acceptance in SR6J b-Tag bin2 region for gluino production one-step x = 1/2 simplified models
Signal acceptance in SR6J b-Tag bin3 region for gluino production one-step x = 1/2 simplified models
Signal acceptance in SR6J b-Tag bin4 region for gluino production one-step x = 1/2 simplified models
Signal acceptance in SR6J b-Veto bin1 region for gluino production one-step x = 1/2 simplified models
Signal acceptance in SR6J b-Veto bin2 region for gluino production one-step x = 1/2 simplified models
Signal acceptance in SR6J b-Veto bin3 region for gluino production one-step x = 1/2 simplified models
Signal acceptance in SR6J b-Veto bin4 region for gluino production one-step x = 1/2 simplified models
Signal acceptance in SR6J discovery high region for gluino production one-step x = 1/2 simplified models
Signal acceptance in SR6J discovery low region for gluino production one-step x = 1/2 simplified models
Signal acceptance in SR2J b-Tag bin1 region for gluino production one-step variable-x simplified models
Signal acceptance in SR2J b-Tag bin2 region for gluino production one-step variable-x simplified models
Signal acceptance in SR2J b-Tag bin3 region for gluino production one-step variable-x simplified models
Signal acceptance in SR2J b-Veto bin1 region for gluino production one-step variable-x simplified models
Signal acceptance in SR2J b-Veto bin2 region for gluino production one-step variable-x simplified models
Signal acceptance in SR2J b-Veto bin3 region for gluino production one-step variable-x simplified models
Signal acceptance in SR2J discovery high region for gluino production one-step variable-x simplified models
Signal acceptance in SR2J discovery low region for gluino production one-step variable-x simplified models
Signal acceptance in SR4Jhx discovery region for gluino production one-step variable-x simplified models
Signal acceptance in SR4Jhx b-Tag bin1 region for gluino production one-step variable-x simplified models
Signal acceptance in SR4Jhx b-Tag bin2 region for gluino production one-step variable-x simplified models
Signal acceptance in SR4Jhx b-Tag bin3 region for gluino production one-step variable-x simplified models
Signal acceptance in SR4Jhx b-Veto bin1 region for gluino production one-step variable-x simplified models
Signal acceptance in SR4Jhx b-Veto bin2 region for gluino production one-step variable-x simplified models
Signal acceptance in SR4Jhx b-Veto bin3 region for gluino production one-step variable-x simplified models
Signal acceptance in SR4Jlx discovery region for gluino production one-step variable-x simplified models
Signal acceptance in SR4Jlx b-Tag bin1 region for gluino production one-step variable-x simplified models
Signal acceptance in SR4Jlx b-Tag bin2 region for gluino production one-step variable-x simplified models
Signal acceptance in SR4Jlx b-Tag bin3 region for gluino production one-step variable-x simplified models
Signal acceptance in SR4Jlx b-Veto bin1 region for gluino production one-step variable-x simplified models
Signal acceptance in SR4Jlx b-Veto bin2 region for gluino production one-step variable-x simplified models
Signal acceptance in SR4Jlx b-Veto bin3 region for gluino production one-step variable-x simplified models
Signal acceptance in SR6J b-Tag bin1 region for gluino production one-step variable-x simplified models
Signal acceptance in SR6J b-Tag bin2 region for gluino production one-step variable-x simplified models
Signal acceptance in SR6J b-Tag bin3 region for gluino production one-step variable-x simplified models
Signal acceptance in SR6J b-Tag bin4 region for gluino production one-step variable-x simplified models
Signal acceptance in SR6J b-Veto bin1 region for gluino production one-step variable-x simplified models
Signal acceptance in SR6J b-Veto bin2 region for gluino production one-step variable-x simplified models
Signal acceptance in SR6J b-Veto bin3 region for gluino production one-step variable-x simplified models
Signal acceptance in SR6J b-Veto bin4 region for gluino production one-step variable-x simplified models
Signal acceptance in SR6J discovery high region for gluino production one-step variable-x simplified models
Signal acceptance in SR6J discovery low region for gluino production one-step variable-x simplified models
Signal acceptance in SR2J b-Tag bin1 region for squark production one-step x = 1/2 simplified models
Signal acceptance in SR2J b-Tag bin2 region for squark production one-step x = 1/2 simplified models
Signal acceptance in SR2J b-Tag bin3 region for squark production one-step x = 1/2 simplified models
Signal acceptance in SR2J b-Veto bin1 region for squark production one-step x = 1/2 simplified models
Signal acceptance in SR2J b-Veto bin2 region for squark production one-step x = 1/2 simplified models
Signal acceptance in SR2J b-Veto bin3 region for squark production one-step x = 1/2 simplified models
Signal acceptance in SR2J discovery high region for squark production one-step x = 1/2 simplified models
Signal acceptance in SR2J discovery low region for squark production one-step x = 1/2 simplified models
Signal acceptance in SR4Jhx discovery region for squark production one-step x = 1/2 simplified models
Signal acceptance in SR4Jhx b-Tag bin1 region for squark production one-step x = 1/2 simplified models
Signal acceptance in SR4Jhx b-Tag bin2 region for squark production one-step x = 1/2 simplified models
Signal acceptance in SR4Jhx b-Tag bin3 region for squark production one-step x = 1/2 simplified models
Signal acceptance in SR4Jhx b-Veto bin1 region for squark production one-step x = 1/2 simplified models
Signal acceptance in SR4Jhx b-Veto bin2 region for squark production one-step x = 1/2 simplified models
Signal acceptance in SR4Jhx b-Veto bin3 region for squark production one-step x = 1/2 simplified models
Signal acceptance in SR4Jlx discovery region for squark production one-step x = 1/2 simplified models
Signal acceptance in SR4Jlx b-Tag bin1 region for squark production one-step x = 1/2 simplified models
Signal acceptance in SR4Jlx b-Tag bin2 region for squark production one-step x = 1/2 simplified models
Signal acceptance in SR4Jlx b-Tag bin3 region for squark production one-step x = 1/2 simplified models
Signal acceptance in SR4Jlx b-Veto bin1 region for squark production one-step x = 1/2 simplified models
Signal acceptance in SR4Jlx b-Veto bin2 region for squark production one-step x = 1/2 simplified models
Signal acceptance in SR4Jlx b-Veto bin3 region for squark production one-step x = 1/2 simplified models
Signal acceptance in SR6J b-Tag bin1 region for squark production one-step x = 1/2 simplified models
Signal acceptance in SR6J b-Tag bin2 region for squark production one-step x = 1/2 simplified models
Signal acceptance in SR6J b-Tag bin3 region for squark production one-step x = 1/2 simplified models
Signal acceptance in SR6J b-Tag bin4 region for squark production one-step x = 1/2 simplified models
Signal acceptance in SR6J b-Veto bin1 region for squark production one-step x = 1/2 simplified models
Signal acceptance in SR6J b-Veto bin2 region for squark production one-step x = 1/2 simplified models
Signal acceptance in SR6J b-Veto bin3 region for squark production one-step x = 1/2 simplified models
Signal acceptance in SR6J b-Veto bin4 region for squark production one-step x = 1/2 simplified models
Signal acceptance in SR6J discovery high region for squark production one-step x = 1/2 simplified models
Signal acceptance in SR6J discovery low region for squark production one-step x = 1/2 simplified models
Signal acceptance in SR2J b-Tag bin1 region for squark production one-step variable-x simplified models
Signal acceptance in SR2J b-Tag bin2 region for squark production one-step variable-x simplified models
Signal acceptance in SR2J b-Tag bin3 region for squark production one-step variable-x simplified models
Signal acceptance in SR2J b-Veto bin1 region for squark production one-step variable-x simplified models
Signal acceptance in SR2J b-Veto bin2 region for squark production one-step variable-x simplified models
Signal acceptance in SR2J b-Veto bin3 region for squark production one-step variable-x simplified models
Signal acceptance in SR2J discovery high region for squark production one-step variable-x simplified models
Signal acceptance in SR2J discovery low region for squark production one-step variable-x simplified models
Signal acceptance in SR4Jhx discovery region for squark production one-step variable-x simplified models
Signal acceptance in SR4Jhx b-Tag bin1 region for squark production one-step variable-x simplified models
Signal acceptance in SR4Jhx b-Tag bin2 region for squark production one-step variable-x simplified models
Signal acceptance in SR4Jhx b-Tag bin3 region for squark production one-step variable-x simplified models
Signal acceptance in SR4Jhx b-Veto bin1 region for squark production one-step variable-x simplified models
Signal acceptance in SR4Jhx b-Veto bin2 region for squark production one-step variable-x simplified models
Signal acceptance in SR4Jhx b-Veto bin3 region for squark production one-step variable-x simplified models
Signal acceptance in SR4Jlx discovery region for squark production one-step variable-x simplified models
Signal acceptance in SR4Jlx b-Tag bin1 region for squark production one-step variable-x simplified models
Signal acceptance in SR4Jlx b-Tag bin2 region for squark production one-step variable-x simplified models
Signal acceptance in SR4Jlx b-Tag bin3 region for squark production one-step variable-x simplified models
Signal acceptance in SR4Jlx b-Veto bin1 region for squark production one-step variable-x simplified models
Signal acceptance in SR4Jlx b-Veto bin2 region for squark production one-step variable-x simplified models
Signal acceptance in SR4Jlx b-Veto bin3 region for squark production one-step variable-x simplified models
Signal acceptance in SR6J b-Tag bin1 region for squark production one-step variable-x simplified models
Signal acceptance in SR6J b-Tag bin2 region for squark production one-step variable-x simplified models
Signal acceptance in SR6J b-Tag bin3 region for squark production one-step variable-x simplified models
Signal acceptance in SR6J b-Tag bin4 region for squark production one-step variable-x simplified models
Signal acceptance in SR6J b-Veto bin1 region for squark production one-step variable-x simplified models
Signal acceptance in SR6J b-Veto bin2 region for squark production one-step variable-x simplified models
Signal acceptance in SR6J b-Veto bin3 region for squark production one-step variable-x simplified models
Signal acceptance in SR6J b-Veto bin4 region for squark production one-step variable-x simplified models
Signal acceptance in SR6J discovery high region for squark production one-step variable-x simplified models
Signal acceptance in SR6J discovery low region for squark production one-step variable-x simplified models
Signal efficiency in SR2J b-Tag bin1 region for gluino production one-step x = 1/2 simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR2J b-Tag bin2 region for gluino production one-step x = 1/2 simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR2J b-Tag bin3 region for gluino production one-step x = 1/2 simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR2J b-Veto bin1 region for gluino production one-step x = 1/2 simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR2J b-Veto bin2 region for gluino production one-step x = 1/2 simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR2J b-Veto bin3 region for gluino production one-step x = 1/2 simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR2J discovery high region for gluino production one-step x = 1/2 simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR2J discovery low region for gluino production one-step x = 1/2 simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR4Jhx discovery region for gluino production one-step x = 1/2 simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR4Jhx b-Tag bin1 region for gluino production one-step x = 1/2 simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR4Jhx b-Tag bin2 region for gluino production one-step x = 1/2 simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR4Jhx b-Tag bin3 region for gluino production one-step x = 1/2 simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR4Jhx b-Veto bin1 region for gluino production one-step x = 1/2 simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR4Jhx b-Veto bin2 region for gluino production one-step x = 1/2 simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR4Jhx b-Veto bin3 region for gluino production one-step x = 1/2 simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR4Jlx discovery region for gluino production one-step x = 1/2 simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR4Jlx b-Tag bin1 region for gluino production one-step x = 1/2 simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR4Jlx b-Tag bin2 region for gluino production one-step x = 1/2 simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR4Jlx b-Tag bin3 region for gluino production one-step x = 1/2 simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR4Jlx b-Veto bin1 region for gluino production one-step x = 1/2 simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR4Jlx b-Veto bin2 region for gluino production one-step x = 1/2 simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR4Jlx b-Veto bin3 region for gluino production one-step x = 1/2 simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR6J b-Tag bin1 region for gluino production one-step x = 1/2 simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR6J b-Tag bin2 region for gluino production one-step x = 1/2 simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR6J b-Tag bin3 region for gluino production one-step x = 1/2 simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR6J b-Tag bin4 region for gluino production one-step x = 1/2 simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR6J b-Veto bin1 region for gluino production one-step x = 1/2 simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR6J b-Veto bin2 region for gluino production one-step x = 1/2 simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR6J b-Veto bin3 region for gluino production one-step x = 1/2 simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR6J b-Veto bin4 region for gluino production one-step x = 1/2 simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR6J discovery high region for gluino production one-step x = 1/2 simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR6J discovery low region for gluino production one-step x = 1/2 simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR2J b-Tag bin1 region for gluino production one-step variable-x simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR2J b-Tag bin2 region for gluino production one-step variable-x simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR2J b-Tag bin3 region for gluino production one-step variable-x simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR2J b-Veto bin1 region for gluino production one-step variable-x simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR2J b-Veto bin2 region for gluino production one-step variable-x simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR2J b-Veto bin3 region for gluino production one-step variable-x simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR2J discovery high region for gluino production one-step variable-x simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR2J discovery low region for gluino production one-step variable-x simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR4Jhx discovery region for gluino production one-step variable-x simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR4Jhx b-Tag bin1 region for gluino production one-step variable-x simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR4Jhx b-Tag bin2 region for gluino production one-step variable-x simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR4Jhx b-Tag bin3 region for gluino production one-step variable-x simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR4Jhx b-Veto bin1 region for gluino production one-step variable-x simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR4Jhx b-Veto bin2 region for gluino production one-step variable-x simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR4Jhx b-Veto bin3 region for gluino production one-step variable-x simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR4Jlx discovery region for gluino production one-step variable-x simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR4Jlx b-Tag bin1 region for gluino production one-step variable-x simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR4Jlx b-Tag bin2 region for gluino production one-step variable-x simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR4Jlx b-Tag bin3 region for gluino production one-step variable-x simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR4Jlx b-Veto bin1 region for gluino production one-step variable-x simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR4Jlx b-Veto bin2 region for gluino production one-step variable-x simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR4Jlx b-Veto bin3 region for gluino production one-step variable-x simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR6J b-Tag bin1 region for gluino production one-step variable-x simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR6J b-Tag bin2 region for gluino production one-step variable-x simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR6J b-Tag bin3 region for gluino production one-step variable-x simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR6J b-Tag bin4 region for gluino production one-step variable-x simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR6J b-Veto bin1 region for gluino production one-step variable-x simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR6J b-Veto bin2 region for gluino production one-step variable-x simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR6J b-Veto bin3 region for gluino production one-step variable-x simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR6J b-Veto bin4 region for gluino production one-step variable-x simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR6J discovery high region for gluino production one-step variable-x simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR6J discovery low region for gluino production one-step variable-x simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR2J b-Tag bin1 region for squark production one-step x = 1/2 simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR2J b-Tag bin2 region for squark production one-step x = 1/2 simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR2J b-Tag bin3 region for squark production one-step x = 1/2 simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR2J b-Veto bin1 region for squark production one-step x = 1/2 simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR2J b-Veto bin2 region for squark production one-step x = 1/2 simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR2J b-Veto bin3 region for squark production one-step x = 1/2 simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR2J discovery high region for squark production one-step x = 1/2 simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR2J discovery low region for squark production one-step x = 1/2 simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR4Jhx discovery region for squark production one-step x = 1/2 simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR4Jhx b-Tag bin1 region for squark production one-step x = 1/2 simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR4Jhx b-Tag bin2 region for squark production one-step x = 1/2 simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR4Jhx b-Tag bin3 region for squark production one-step x = 1/2 simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR4Jhx b-Veto bin1 region for squark production one-step x = 1/2 simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR4Jhx b-Veto bin2 region for squark production one-step x = 1/2 simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR4Jhx b-Veto bin3 region for squark production one-step x = 1/2 simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR4Jlx discovery region for squark production one-step x = 1/2 simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR4Jlx b-Tag bin1 region for squark production one-step x = 1/2 simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR4Jlx b-Tag bin2 region for squark production one-step x = 1/2 simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR4Jlx b-Tag bin3 region for squark production one-step x = 1/2 simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR4Jlx b-Veto bin1 region for squark production one-step x = 1/2 simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR4Jlx b-Veto bin2 region for squark production one-step x = 1/2 simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR4Jlx b-Veto bin3 region for squark production one-step x = 1/2 simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR6J b-Tag bin1 region for squark production one-step x = 1/2 simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR6J b-Tag bin2 region for squark production one-step x = 1/2 simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR6J b-Tag bin3 region for squark production one-step x = 1/2 simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR6J b-Tag bin4 region for squark production one-step x = 1/2 simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR6J b-Veto bin1 region for squark production one-step x = 1/2 simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR6J b-Veto bin2 region for squark production one-step x = 1/2 simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR6J b-Veto bin3 region for squark production one-step x = 1/2 simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR6J b-Veto bin4 region for squark production one-step x = 1/2 simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR6J discovery high region for squark production one-step x = 1/2 simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR6J discovery low region for squark production one-step x = 1/2 simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR2J b-Tag bin1 region for squark production one-step variable-x simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR2J b-Tag bin2 region for squark production one-step variable-x simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR2J b-Tag bin3 region for squark production one-step variable-x simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR2J b-Veto bin1 region for squark production one-step variable-x simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR2J b-Veto bin2 region for squark production one-step variable-x simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR2J b-Veto bin3 region for squark production one-step variable-x simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR2J discovery high region for squark production one-step variable-x simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR2J discovery low region for squark production one-step variable-x simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR4Jhx discovery region for squark production one-step variable-x simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR4Jhx b-Tag bin1 region for squark production one-step variable-x simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR4Jhx b-Tag bin2 region for squark production one-step variable-x simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR4Jhx b-Tag bin3 region for squark production one-step variable-x simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR4Jhx b-Veto bin1 region for squark production one-step variable-x simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR4Jhx b-Veto bin2 region for squark production one-step variable-x simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR4Jhx b-Veto bin3 region for squark production one-step variable-x simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR4Jlx discovery region for squark production one-step variable-x simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR4Jlx b-Tag bin1 region for squark production one-step variable-x simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR4Jlx b-Tag bin2 region for squark production one-step variable-x simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR4Jlx b-Tag bin3 region for squark production one-step variable-x simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR4Jlx b-Veto bin1 region for squark production one-step variable-x simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR4Jlx b-Veto bin2 region for squark production one-step variable-x simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR4Jlx b-Veto bin3 region for squark production one-step variable-x simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR6J b-Tag bin1 region for squark production one-step variable-x simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR6J b-Tag bin2 region for squark production one-step variable-x simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR6J b-Tag bin3 region for squark production one-step variable-x simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR6J b-Tag bin4 region for squark production one-step variable-x simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR6J b-Veto bin1 region for squark production one-step variable-x simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR6J b-Veto bin2 region for squark production one-step variable-x simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR6J b-Veto bin3 region for squark production one-step variable-x simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR6J b-Veto bin4 region for squark production one-step variable-x simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR6J discovery high region for squark production one-step variable-x simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
Signal efficiency in SR6J discovery low region for squark production one-step variable-x simplified models. The -1 value indicates the truth yields for this point is 0 but the reco yields is not 0
When you search on a word, e.g. 'collisions', we will automatically search across everything we store about a record. But sometimes you may wish to be more specific. Here we show you how.
Guidance on the query string syntax can also be found in the OpenSearch documentation.
We support searching for a range of records using their HEPData record ID or Inspire ID.
About HEPData Submitting to HEPData HEPData File Formats HEPData Coordinators HEPData Terms of Use HEPData Cookie Policy
Status
Email
Forum
Twitter
GitHub
Copyright ~1975-Present, HEPData | Powered by Invenio, funded by STFC, hosted and originally developed at CERN, supported and further developed at IPPP Durham.