The production cross section of inclusive isolated photons has been measured by the ALICE experiment at the CERN LHC in pp collisions at a centre-of-momentum energy of $\sqrt{s}=$ 7 TeV. The measurement is performed with the electromagnetic calorimeter EMCal and the central tracking detectors, covering a range of $|\eta|<0.27$ in pseudorapidity and a transverse momentum range of $ 10 < p_{\rm T}^{\gamma} < $ 60 GeV/$c$. The result extends the $p_{\rm T}$ coverage of previously published results of the ATLAS and CMS experiments at the same collision energy to smaller $p_{\rm T}$. The measurement is compared to next-to-leading order perturbative QCD calculations and to the results from the ATLAS and CMS experiments. All measurements and theory predictions are in agreement with each other.
At hadron colliders, the net transverse momentum of particles that do not interact with the detector (missing transverse momentum, $\vec{p}_\mathrm{T}^\text{miss}$) is a crucial observable in many analyses. In the standard model, $\vec{p}_\mathrm{T}^\text{miss}$ originates from neutrinos. Many beyond-the-standard-model particles, such as dark matter candidates, are also expected to leave the experimental apparatus undetected. This paper presents a novel $\vec{p}_\mathrm{T}^\text{miss}$ estimator, DeepMET, which is based on deep neural networks that were developed by the CMS Collaboration at the LHC. The DeepMET algorithm produces a weight for each reconstructed particle based on its properties. The estimator is based on the negative vector sum of the weighted transverse momenta of all reconstructed particles in an event. Compared with other estimators currently employed by CMS, DeepMET improves the $\vec{p}_\mathrm{T}^\text{miss}$ resolution by 10$-$30%, shows improvement for a wide range of final states, is easier to train, and is more resilient against the effects of additional proton-proton interactions accompanying the collision of interest.
A measurement is presented of the cross section in proton-proton collisions for the production of two W bosons and one Z boson. It is based on data recorded by the CMS experiment at the CERN LHC at center-of-mass energies $\sqrt{s}$ = 13 and 13.6 TeV, corresponding to an integrated luminosity of 200 fb$^{-1}$. Events with four charged leptons (electrons or muons) in the final state are selected. Both nonresonant WWZ production and ZH production, with the Higgs boson decaying into two W bosons, are reported. For the first time, the two processes are measured separately in a simultaneous fit. Combining the two modes, signal strengths relative to the standard model (SM) predictions of 0.75 $^{+0.34}_{-0.29}$ and 1.74 $^{+0.71}_{-0.60}$ are measured for $\sqrt{s}$ = 13 and 13.6 TeV, respectively. The observed (expected) significance for the triboson signal is 3.8 (2.5) standard deviations for $\sqrt{s}$ = 13.6 TeV, thus providing the first evidence for triboson production at this center-of-mass energy. Combining the two modes and the two center-of-mass energies, the inclusive signal strength relative to the SM prediction is measured to be 1.03 $^{+0.31}_{-0.28}$, with an observed (expected) significance of 4.5 (5.0) standard deviations.
A model-independent measurement of the differential production cross section of the Higgs boson decaying into a pair of W bosons, with a final state including two jets produced in association, is presented. In the analysis, events are selected in which the decay products of the two W bosons consist of an electron, a muon, and missing transverse momentum. The model independence of the measurement is maximized by making use of a discriminating variable that is agnostic to the signal hypothesis developed through machine learning. The analysis is based on proton-proton collision data at $\sqrt{s}$ = 13 TeV collected with the CMS detector from 2012$-$2018, corresponding to an integrated luminosity of 138 fb$^{-1}$. The production cross section is measured as a function of the difference in azimuthal angle between the two jets. The differential cross section measurements are used to constrain Higgs boson couplings within the standard model effective field theory framework.
A search for resonances in top quark pair ($\text{t}\bar{\text{t}}$) production in final states with two charged leptons and multiple jets is presented, based on proton-proton collision data collected by the CMS experiment at the CERN LHC at $\sqrt{s}$ = 13 TeV, corresponding to 138 fb$^{-1}$. The analysis explores the invariant mass of the $\text{t}\bar{\text{t}}$ system and two angular observables that provide direct access to the correlation of top quark and antiquark spins. A significant excess of events is observed near the kinematic $\text{t}\bar{\text{t}}$ threshold compared to the nonresonant production predicted by fixed-order perturbative quantum chromodynamics (pQCD). The observed enhancement is consistent with the production of a color-singlet pseudoscalar ($^1$S$^{[1]}_0$) quasi-bound toponium state, as predicted by nonrelativistic quantum chromodynamics. Using a simplified model for $^1$S$^{[1]}_0$ toponium, the cross section of the excess above the pQCD prediction is measured to be 8.8 $^{+1.2}_{-1.4}$ pb.
A search is presented for a new scalar resonance, X, decaying to a standard model Higgs boson and another new scalar particle, Y, in the final state where the Higgs boson decays to a $\mathrm{b\bar{b}}$ pair, while the Y particle decays to a pair of photons. The search is performed in the mass range 240$-$100 \GeV for the resonance X, and in the mass range 70$-$800 GeV for the particle Y, using proton-proton collision data collected by the CMS experiment at $\sqrt{s}$ = 13 TeV, corresponding to an integrated luminosity of 132 fb$^{-1}$. In general, the data are found to be compatible with the standard model expectation. Observed (expected) upper limits at 95% confidence level on the product of the production cross section and the relevant branching fraction are extracted for the X $\to$ YH process, and are found to be within the range of 0.05$-$2.69 (0.08$-$1.94) fb, depending on $m_\mathrm{X}$ and $m_\mathrm{Y}$. The most significant deviation from the background-only hypothesis is observed for X and Y masses of 300 and 77 GeV, respectively, with a local (global) significance of 3.33 (0.65) standard deviations.
This paper presents a search for a Higgs boson produced in association with a charm quark (cH) which allows to probe the Higgs-charm Yukawa coupling strength modifier $κ_\mathrm{c}$. Higgs boson decays to a pair of W bosons are considered, where one W boson decays to an electron and a neutrino, and the other \PW boson decays to a muon and a neutrino. The data, corresponding to an integrated luminosity of 138 fb$^{-1}$, were collected between 2016 and 2018 with the CMS detector at the LHC at a center-of-mass energy of $\sqrt{s}$ = 13 TeV. Upper limits at the 95% confidence level (CL) are set on the ratio of the measured yield to the standard model expectation for cH production. The observed (expected) upper limit is 1065 (506). When combined with the previous search for cH in the diphoton decay channel of the Higgs boson, the limits are interpreted as observed (expected) constraints at 95% CL on the value of $κ_\mathrm{c}$, $\lvertκ_\mathrm{c}\rvert$ $\lt$ 47 (51).
The first observation of single top quark production in association with a W and a Z boson in proton-proton collisions is reported. The analysis uses data at center-of-mass energies of 13 and 13.6 TeV recorded with the CMS detector at the CERN LHC, corresponding to a total integrated luminosity of 200 fb$^{-1}$. Events with three or four charged leptons, which can be electrons or muons, are selected. Advanced machine-learning algorithms and improved reconstruction methods, compared to an earlier analysis, result in an unprecedented sensitivity to tWZ production. The measured cross sections for tWZ production are 248 $\pm$ 52 fb and 244 $\pm$ 74 fb for $\sqrt{s}$ =13 and 13.6 TeV, respectively. The signal is established with a statistical significance of 5.8 standard deviations, with 3.5 expected, compared to the background-only hypothesis.
A search for the violation of the charge-parity ($CP$) symmetry in the production of top quarks in association with Z bosons is presented, using events with at least three charged leptons and additional jets. The search is performed in a sample of proton-proton collision data collected by the CMS experiment at the CERN LHC in 2016-2018 at a center-of-mass energy of 13 TeV and in 2022 at 13.6 TeV, corresponding to a total integrated luminosity of 173 fb$^{-1}$. For the first time in this final state, observables that are odd under the $CP$ transformation are employed. Also for the first time, physics-informed machine-learning techniques are used to construct these observables. While for standard model (SM) processes the distributions of these observables are predicted to be symmetric around zero, $CP$-violating modifications of the SM would introduce asymmetries. Two $CP$-odd operators $\mathcal{O}_\text{tW}^\text{I}$ and $\mathcal{O}_\text{tZ}^\text{I}$ in the SM effective field theory are considered that may modify the interactions between top quarks and electroweak bosons. The obtained results are consistent with the SM prediction within two standard deviations, and exclusion limits on the associated Wilson coefficients of $-$2.7 $\lt$$c_\text{tW}^\text{I}$$\lt$ 2.5 and $-$0.2 $\lt$$c_\text{tZ}^\text{I}$$\lt$ 2.0 are set at 95% confidence level. The largest discrepancy is observed in $c_\text{tZ}^\text{I}$ where data is consistent with positive values, with an observed local significance with respect to the SM hypothesis of 2.5 standard deviations, when only linear terms are considered.
Inclusive and differential cross section measurements of top quark pair ($\mathrm{t\bar{t}}$) production in association with a photon ($γ$) are performed as a function of lepton, photon, top quark, and $\mathrm{t\bar{t}}$ kinematic observables, using data from proton-proton collisions at $\sqrt{s}$ = 13 TeV, corresponding to an integrated luminosity of 138 fb$^{-1}$. Events containing two leptons (electrons or muons) and a photon in the final state are considered. The fiducial cross section of $\mathrm{t\bar{t}}γ$ is measured to be 137 $\pm$ 8 fb, in a phase space including events with a high momentum, isolated photon. The fiducial cross section of $\mathrm{t\bar{t}}γ$ is also measured to be 56 $\pm$ 5 fb when considering only events where the photon is emitted in the production part of the process. Both measurements are in agreement with the theoretical predictions, of 126 $\pm$ 19 fb and 57 $\pm$ 5 fb, respectively. Differential measurements are performed at the particle and parton levels. Additionally, inclusive and differential ratios between the cross sections of $\mathrm{t\bar{t}}γ$ and $\mathrm{t\bar{t}}$ production are measured. The inclusive ratio is found to be 0.0133 $\pm$ 0.0005, in agreement with the standard model prediction of 0.0127 $\pm$ 0.0008. The top quark charge asymmetry in $\mathrm{t\bar{t}}γ$ production is also measured to be $-$0.012 $\pm$ 0.042, compatible with both the standard model prediction and with no asymmetry.