Date

Measurement of the production of charm jets tagged with D$^{0}$ mesons in pp collisions at $\sqrt{s}$= 7 TeV

The ALICE collaboration Acharya, Shreyasi ; Adamova, Dagmar ; Adhya, Souvik Priyam ; et al.
JHEP 08 (2019) 133, 2019.
Inspire Record 1733683 DOI 10.17182/hepdata.90719

The production of charm jets in proton-proton collisions at a center-of-mass energy of $\sqrt{s}=7$ TeV was measured with the ALICE detector at the CERN Large Hadron Collider. The measurement is based on a data sample corresponding to a total integrated luminosity of $6.23$ ${\rm nb}^{-1}$, collected using a minimum-bias trigger. Charm jets are identified by the presence of a D$^0$ meson among their constituents. The D$^0$ mesons are reconstructed from their hadronic decay D$^0\rightarrow$K$^{-}\pi^{+}$. The D$^0$-meson tagged jets are reconstructed using tracks of charged particles (track-based jets) with the anti-$k_{\mathrm{T}}$ algorithm in the jet transverse momentum range $5<p_{\rm{T,jet}}^{\mathrm{ch}}<30$ ${\rm GeV/}c$ and pseudorapidity $|\eta_{\rm jet}|<0.5$. The fraction of charged jets containing a D$^0$-meson increases with $p_{\rm{T,jet}}^{\rm{ch}}$ from $0.042 \pm 0.004\, \mathrm{(stat)} \pm 0.006\, \mathrm{(syst)}$ to $0.080 \pm 0.009\, \rm{(stat)} \pm 0.008\, \rm{(syst)}$. The distribution of D$^0$-meson tagged jets as a function of the jet momentum fraction carried by the D$^0$ meson in the direction of the jet axis ($z_{||}^{\mathrm{ch}}$) is reported for two ranges of jet transverse momenta, $5<p_{\rm{T,jet}}^{\rm{ch}}<15$ ${\rm GeV/}c$ and $15<p_{\rm{T,jet}}^{\rm{ch}}<30$ ${\rm GeV/}c$ in the intervals $0.2<z_{||}^{\rm{ch}}<1.0$ and $0.4<z_{||}^{\rm{ch}}<1.0$, respectively. The data are compared with results from Monte Carlo event generators (PYTHIA 6, PYTHIA 8 and Herwig 7) and with a Next-to-Leading-Order perturbative Quantum Chromodynamics calculation, obtained with the POWHEG method and interfaced with PYTHIA 6 for the generation of the parton shower, fragmentation, hadronisation and underlying event.

6 data tables match query

$p_{\rm T}$-differential cross section of charm jets tagged with D$^0$ mesons in pp collisions at $\sqrt{s}$ = 7 TeV.

Ratio of the $p_{\rm T}$-differential cross section of charm jets tagged with D$^0$ mesons to the inclusive jet cross section in pp collisions at $\sqrt{s}$ = 7 TeV.

$z_{||}^{\rm ch}$-differential cross section of D$^0$-meson tagged track-based jets in pp collisions at $\sqrt{s}$ = 7 TeV, with $p_{\rm T,D}$ > 2 GeV/$c$ and 5 < $p_{\rm T,jet}^{\rm ch}$ < 15 GeV/$c$.

More…

Multiplicity dependence of light (anti-)nuclei production in p-Pb collisions at $\sqrt{s_{\rm{NN}}}$ = 5.02 TeV

The ALICE collaboration Acharya, Shreyasi ; Adamova, Dagmar ; Adhya, Souvik Priyam ; et al.
Phys.Lett.B 800 (2020) 135043, 2020.
Inspire Record 1738836 DOI 10.17182/hepdata.92019

The measurement of the deuteron and anti-deuteron production in the rapidity range $-1 < y < 0$ as a function of transverse momentum and event multiplicity in p-Pb collisions at $\sqrt{s_{\rm{NN}}}$ = 5.02 TeV is presented. (Anti-)deuterons are identified via their specific energy loss $\rm{d}E/\rm{d}x$ and via their time-of-flight. Their production in p-Pb collisions is compared to pp and Pb-Pb collisions and is discussed within the context of thermal and coalescence models. The ratio of integrated yields of deuterons to protons (d/p) shows a significant increase as a function of the charged-particle multiplicity of the event starting from values similar to those observed in pp collisions at low multiplicities and approaching those observed in Pb-Pb collisions at high multiplicities. The mean transverse momenta are extracted from the deuteron spectra and the values are similar to those obtained for p and $\Lambda$ particles. Thus, deuteron spectra do not follow mass ordering. This behaviour is in contrast to the trend observed for non-composite particles in p-Pb collisions. In addition, the production of the rare $^{3}{\rm{He}}$ and $^{3}\bar{\rm He}$ nuclei has been studied. The spectrum corresponding to all non-single diffractive p-Pb collisions is obtained in the rapidity window $-1 < y < 0$ and the $p_{\rm{T}}$-integrated yield d$N$/d$y$ is extracted. It is found that the yields of protons, deuterons, and $^{3}{\rm{He}}$, normalised by the spin degeneracy factor, follow an exponential decrease with mass number.

25 data tables match query

Transverse momentum distributions of deuterons in the 0-10% V0A multiplicity class

Transverse momentum distributions of deuterons in the 10-20% V0A multiplicity class

Transverse momentum distributions of deuterons in the 20-40% V0A multiplicity class

More…

(Anti-)Deuteron production in pp collisions at $\sqrt{s}=13$ TeV

The ALICE collaboration Acharya, S. ; Adamova, Dagmar ; Adler, Alexander ; et al.
Eur.Phys.J.C 80 (2020) 889, 2020.
Inspire Record 1784203 DOI 10.17182/hepdata.97183

The study of (anti-)deuteron production in pp collisions has proven to be a powerful tool to investigate the formation mechanism of loosely bound states in high energy hadronic collisions. In this paper the production of (anti-)deuterons is studied as a function of the charged particle multiplicity in inelastic pp collisions at $\sqrt{s}=13$ TeV using the ALICE experiment. Thanks to the large number of accumulated minimum bias events, it has been possible to measure (anti-)deuteron production in pp collisions up to the same charged particle multiplicity ($\rm{d} N_{ch}/\rm{d}\eta\sim26$) as measured in p-Pb collisions at similar centre-of-mass energies. Within the uncertainties, the deuteron yield in pp collisions resembles the one in p-Pb interactions, suggesting a common formation mechanism behind the production of light nuclei in hadronic interactions. In this context the measurements are compared with the expectations of coalescence and Statistical Hadronisation Models (SHM).

43 data tables match query

Transverse momentum distributions of deuterons in the I V0M multiplicity class

Transverse momentum distributions of deuterons in the II V0M multiplicity class

Transverse momentum distributions of deuterons in the III V0M multiplicity class

More…

Measurement of isolated photon-hadron correlations in $\sqrt{s_{\rm{NN}}}$ = 5.02 TeV pp and p-Pb collisions

The ALICE collaboration Acharya, Shreyasi ; Adamova, Dagmar ; Adler, Alexander ; et al.
Phys.Rev.C 102 (2020) 044908, 2020.
Inspire Record 1798523 DOI 10.17182/hepdata.98564

This paper presents isolated photon-hadron correlations using pp and p-Pb data collected by the ALICE detector at the LHC. For photons with |$\eta$| < 0.67 and 12 < $p_{\rm{T}}$ < 40 GeV/$c$, the associated yield of charged particles in the range |$\eta$| < 0.80 and 0.5 < $p_{\rm{T}}$ < 10 GeV/$c$ is presented. These momenta are much lower than previous measurements at the LHC. No significant difference between pp and p-Pb is observed, with PYTHIA 8.2 describing both data sets within uncertainties. This measurement constrains nuclear effects on the parton fragmentation in p-Pb collisions, and provides a benchmark for future studies of Pb-Pb collisions.

5 data tables match query

$\gamma^\mathrm{iso}$-hadron correlation functions for pp (red) and p$-$Pb (blue) data at $\sqrt{s_\mathrm{NN}}$ = 5.02 TeV as measured by the ALICE detector. The different panels represent three different $z_\mathrm{T}$ bins. The correlation functions are projected over the range $|\Delta\eta| < 1.2$. The darker bands at zero represents the uncertainty from the underlying event estimation in pp and p$-$Pb. The underlying event was estimated over the range $|0.4 <\Delta\varphi < 1.6|$. The vertical bars represent statistical uncertainties only. The boxes indicate the systematic uncertainties. The dashed green line represents the $\gamma^\mathrm{iso}$-hadron correlation function obtained with PYTHIA 8.2 Monash Tune. '$p$' is the p-value for the hypothesis that the pp and p$-$Pb data follow the same true correlation function.

$\gamma^\mathrm{iso}$-hadron correlation functions for pp (red) and p$-$Pb (blue) data at $\sqrt{s_\mathrm{NN}}$ = 5.02 TeV as measured by the ALICE detector. The different panels represent three different $z_\mathrm{T}$ bins. The correlation functions are projected over the range $|\Delta\eta| < 1.2$. The darker bands at zero represents the uncertainty from the underlying event estimation in pp and p$-$Pb. The underlying event was estimated over the range $|0.4 <\Delta\varphi < 1.6|$. The vertical bars represent statistical uncertainties only. The boxes indicate the systematic uncertainties. The dashed green line represents the $\gamma^\mathrm{iso}$-hadron correlation function obtained with PYTHIA 8.2 Monash Tune. '$p$' is the p-value for the hypothesis that the pp and p$-$Pb data follow the same true correlation function.

$\gamma^\mathrm{iso}$-hadron correlation functions for pp (red) and p$-$Pb (blue) data at $\sqrt{s_\mathrm{NN}}$ = 5.02 TeV as measured by the ALICE detector. The different panels represent three different $z_\mathrm{T}$ bins. The correlation functions are projected over the range $|\Delta\eta| < 1.2$. The darker bands at zero represents the uncertainty from the underlying event estimation in pp and p$-$Pb. The underlying event was estimated over the range $|0.4 <\Delta\varphi < 1.6|$. The vertical bars represent statistical uncertainties only. The boxes indicate the systematic uncertainties. The dashed green line represents the $\gamma^\mathrm{iso}$-hadron correlation function obtained with PYTHIA 8.2 Monash Tune. '$p$' is the p-value for the hypothesis that the pp and p$-$Pb data follow the same true correlation function.

More…

Longitudinal and azimuthal evolution of two-particle transverse momentum correlations in Pb-Pb collisions at $\sqrt{s_{\rm{NN}}}$ = 2.76 TeV

The ALICE collaboration Acharya, Shreyasi ; Adamova, Dagmar ; Adler, Alexander ; et al.
Phys.Lett.B 804 (2020) 135375, 2020.
Inspire Record 1762340 DOI 10.17182/hepdata.93887

This paper presents the first measurements of the charge independent (CI) and charge dependent (CD) two-particle transverse momentum correlators $G_{2}^{\rm CI}$ and $G_{2}^{\rm CD}$ in Pb--Pb collisions at $\sqrt{s_{\text{NN}}} = 2.76\;\text{\TeVe}$ by the ALICE collaboration. The two-particle transverse momentum correlator $G_{2}$ was introduced as a measure of the momentum current transfer between neighbouring system cells. The correlators are measured as a function of pair separation in pseudorapidity ($\Delta \eta$) and azimuth ($\Delta \varphi$) and as a function of collision centrality. From peripheral to central collisions, the correlator $G_{2}^{\rm CI}$ exhibits a longitudinal broadening while undergoing a monotonic azimuthal narrowing. By contrast, $G_{2}^{\rm CD}$ exhibits a narrowing along both dimensions. These features are not reproduced by models such as HIJING and AMPT. However, the observed narrowing of the correlators from peripheral to central collisions is expected to result from the stronger transverse flow profiles produced in more central collisions and the longitudinal broadening is predicted to be sensitive to momentum currents and the shear viscosity per unit of entropy density $\eta/s$ of the matter produced in the collisions. The observed broadening is found to be consistent with the hypothesized lower bound of $\eta/s$ and is in qualitative agreement with values obtained from anisotropic flow measurements.

12 data tables match query

Two-particle transverse momentum correlation $G_{2}^{\rm CI}$ for central (0-5%) Pb--Pb collisions at $\sqrt{s_{\rm NN}}=2.76\;\text{TeV}$.

Two-particle transverse momentum correlation $G_{2}^{\rm CI}$ for semi-central (30-40%) Pb--Pb collisions at $\sqrt{s_{\rm NN}}=2.76\;\text{TeV}$.

Two-particle transverse momentum correlation $G_{2}^{\rm CI}$ for perippheral (70-80%) Pb--Pb collisions at $\sqrt{s_{\rm NN}}=2.76\;\text{TeV}$.

More…

Version 2
Search for a common baryon source in high-multiplicity pp collisions at the LHC

The ALICE collaboration Acharya, Shreyasi ; Adamova, Dagmar ; Adler, Alexander ; et al.
Phys.Lett.B 811 (2020) 135849, 2020.
Inspire Record 1791631 DOI 10.17182/hepdata.98857

We report on the measurement of the size of the particle-emitting source from two-baryon correlations with ALICE in high-multiplicity pp collisions at $\sqrt{s}$ = 13 TeV. The source radius is studied with low relative momentum p-p, $\bar{\rm{p}}$-$\bar{\rm{p}}$, p-$Λ$ and $\bar{\rm{p}}$-$\barΛ$ pairs as a function of the pair transverse mass $m_{\rm{T}}$ considering for the first time in a quantitative way the effect of strong resonance decays. After correcting for this effect, the radii extracted for pairs of different particle species agree. This indicates that protons, antiprotons, $Λ$, and $\barΛ$ originate from the same source. Within the measured $m_{\rm{T}}$ range (1.1-2.2) GeV/$c^{2}$ the invariant radius of this common source varies between 0.85 and 1.3 fm. These results provide a precise reference for studies of the strong hadron-hadron interactions and for the investigation of collective properties in small colliding systems.

9 data tables match query

Source radius $r_{0}$ as a function of〈$m_{T}$〉for the assumption of a purely Gaussian source. The blue crosses result from fitting the p–p correlation function with the strong Argonne v18 potential. The green squared crosses (red triangular crosses) result from fitting the p–Λ correlation functions with the strong χEFT LO (NLO) potential. Statistical (lines) and systematic (boxes) uncertainties are shown separately.

Source radius $r_0$ as a function of〈$m_\mathrm{T}$〉for the assumption of a purely Gaussian source. The blue crosses result from fitting the p–p correlation function with the strong Argonne v18 potential. The green squared crosses (red triangular crosses) result from fitting the p–Λ correlation functions with the strong χEFT LO (NLO) potential. Statistical (lines) and systematic (boxes) uncertainties are shown separately.

Source radius $r_{0}$ as a function of〈$m_{T}$〉for the assumption of a purely Gaussian source. The blue crosses result from fitting the p–p correlation function with the strong Argonne v18 potential. The green squared crosses (red triangular crosses) result from fitting the p–Λ correlation functions with the strong χEFT LO (NLO) potential. Statistical (lines) and systematic (boxes) uncertainties are shown separately.

More…

Search for resonances decaying to an anomalous jet and a Higgs boson in proton-proton collisions at $\sqrt{s}$ = 13 TeV

The CMS collaboration Hayrapetyan, Aram ; Makarenko, Vladimir ; Tumasyan, Armen ; et al.
CMS-B2G-24-015, 2025.
Inspire Record 2970687 DOI 10.17182/hepdata.158363

This paper presents a search for new physics through the process where a new massive particle, X, decays into a Higgs boson and a second particle, Y. The Higgs boson subsequently decays into a bottom quark-antiquark pair, reconstructed as a single large-radius jet. The decay products of Y are also assumed to produce a single large-radius jet. The identification of the Y particle is enhanced by computing the anomaly score of its candidate jet using an autoencoder, which measures deviations from typical QCD multijet jets. This allows a simultaneous search for multiple Y decay scenarios within a single analysis. In the main benchmark process, Y is a scalar particle that decays into W$^+$W$^-$. Two other benchmark processes are also considered, where Y is a scalar particle decaying into a light quark-antiquark pair, or into a top quark-antiquark pair. The last benchmark considers Y as a hadronically decaying top quark, arising from the decay of a vector-like quark into a top quark and a Higgs boson. Data recorded by the CMS experiment at a center-of-mass energy of 13 TeV in 2016$-$2018, and corresponding to an integrated luminosity of 138 fb$^{-1}$, are analyzed. No significant excess is observed, and upper limits on the benchmark signal cross section for various masses of X and Y, at 95% confidence level, are placed.

13 data tables match query

The $m_{jj}$ and $m_{J}$ projections for the number of observed events (black markers) compared with the backgrounds estimated in the fit to the data (filled histograms) in the CR. Pass and Fail categories are shown. The high level of agreement between the model and the data in the Fail region is due to the nature of the background estimate. The lower panels show the ``Pull'' defined as $(\text{observed events}{-}\text{expected events})/\sqrt{\smash[b]{\sigma_\text{obs}^{2} + \sigma_\text{exp}^{2}}}$, where $\sigma_\text{obs}$ and $\sigma_\text{exp}$ are the total uncertainties in the observation and the background estimation, respectively.

The $m_{jj}$ and $m_{J}$ projections for the number of observed events (black markers) compared with the backgrounds estimated in the fit to the data (filled histograms) in the CR. Pass and Fail categories are shown. The high level of agreement between the model and the data in the Fail region is due to the nature of the background estimate. The lower panels show the ``Pull'' defined as $(\text{observed events}{-}\text{expected events})/\sqrt{\smash[b]{\sigma_\text{obs}^{2} + \sigma_\text{exp}^{2}}}$, where $\sigma_\text{obs}$ and $\sigma_\text{exp}$ are the total uncertainties in the observation and the background estimation, respectively.

The $m_{jj}$ and $m_{J}$ projections for the number of observed events (black markers) compared with the backgrounds estimated in the fit to the data (filled histograms) in the CR. Pass and Fail categories are shown. The high level of agreement between the model and the data in the Fail region is due to the nature of the background estimate. The lower panels show the ``Pull'' defined as $(\text{observed events}{-}\text{expected events})/\sqrt{\smash[b]{\sigma_\text{obs}^{2} + \sigma_\text{exp}^{2}}}$, where $\sigma_\text{obs}$ and $\sigma_\text{exp}$ are the total uncertainties in the observation and the background estimation, respectively.

More…

First exclusive reconstruction of the B$^{*+}$, B$^{*0}$, and B$^{*0}_\text{s}$ mesons and precise measurement of their masses

The CMS collaboration Hayrapetyan, Aram ; Makarenko, Vladimir ; Tumasyan, Armen ; et al.
CMS-BPH-24-011, 2025.
Inspire Record 2958462 DOI 10.17182/hepdata.159543

Using proton-proton collision data collected by the CMS experiment at $\sqrt{s}$ = 13 TeV in 2016$-$2018, corresponding to an integrated luminosity of 140 fb$^{-1}$, the first full reconstruction of the three vector B meson states, B$^{*+}$, B$^{*0}$, and B$^{*0}_\text{s}$, is performed. The mass differences between the excited mesons and their corresponding ground states are measured to be $m(\text{B}^{*+})-m(\text{B}^+)$ = 45.277 $\pm$ 0.039 $\pm$ 0.027 MeV, $m(\text{B}^{*0})- m(\text{B}^0)$ = 45.471 $\pm$ 0.056 $\pm$ 0.028 MeV, and $m(\text{B}^{*0}_\text{s})-m(\text{B}_\text{s})$ = 49.407 $\pm$ 0.132 $\pm$ 0.041 MeV, where the first uncertainties are statistical and the second are systematic. These results improve on the precision of previous measurements by an order of magnitude.

1 data table match query

The measured mass differences between vector and ground B meson states.


Version 2
Search for charged lepton flavor violating Z and Z' boson decays in proton-proton collisions at $\sqrt{s}$ = 13 TeV

The CMS collaboration Hayrapetyan, Aram ; Makarenko, Vladimir ; Tumasyan, Armen ; et al.
CMS-SMP-23-003, 2025.
Inspire Record 2959278 DOI 10.17182/hepdata.161021

A search for flavor violating decays of the Z boson to charged leptons is performed using data from proton-proton collisions at $\sqrt{s}$ = 13 TeV collected with the CMS detector at the LHC, corresponding to an integrated luminosity of 138 fb$^{-1}$. Each of the decays Z $\to$ e$μ$, Z $\to$ e$τ$, and Z $\to$$μτ$ is considered. The data are consistent with the backgrounds expected from standard model processes. For the Z $\to$ e$μ$ channel the observed (expected) 95% confidence level upper limit on the branching fraction is 1.9 (2.0) $\times$ 10$^{-7}$, which is the most stringent direct limit to date on this process; the corresponding limits for the Z $\to$ e$τ$ and Z $\to$ $μτ$ channels are 13.8 (11.4) $\times$ 10$^{-6}$ and 12.0 (5.3) $\times$ 10$^{-6}$, respectively. Additionally, the e$μ$ final state is used to search for lepton flavor violating decays of Z' resonances in the mass range from 110 to 500 GeV. No significant excess is observed above the predicted background levels.

4 data tables match query

Expected and observed 95% CL upper limits on $\mathcal{B}(\mathrm{Z}\rightarrow e\mu)$ for three BDT score bins and their combination, at $\sqrt{s} =$ 13 TeV with 138 fb$^{-1}$.

Expected and observed 95% CL upper limits on $\mathcal{B}(\mathrm{Z}\rightarrow e\tau)$ in the hadronic- and leptonic-$\tau$ decay channels, and for their combination ($\sqrt{s} =$ 13 TeV, 138 fb$^{-1})$.

Expected and observed 95% CL upper limits on $\mathcal{B}(\mathrm{Z}\rightarrow \mu\tau)$ in the hadronic- and leptonic-$\tau$ decay channels, and for their combination ($\sqrt{s} =$ 13 TeV, 138 fb$^{-1}$).

More…

Search for a new scalar resonance decaying to a Higgs boson and another new scalar particle in the final state with two bottom quarks and two photons in proton-proton collisions at $\sqrt{s}$ = 13 TeV

The CMS collaboration Hayrapetyan, Aram ; Makarenko, Vladimir ; Tumasyan, Armen ; et al.
CMS-B2G-24-001, 2025.
Inspire Record 2961026 DOI 10.17182/hepdata.158364

A search is presented for a new scalar resonance, X, decaying to a standard model Higgs boson and another new scalar particle, Y, in the final state where the Higgs boson decays to a $\mathrm{b\bar{b}}$ pair, while the Y particle decays to a pair of photons. The search is performed in the mass range 240$-$100 \GeV for the resonance X, and in the mass range 70$-$800 GeV for the particle Y, using proton-proton collision data collected by the CMS experiment at $\sqrt{s}$ = 13 TeV, corresponding to an integrated luminosity of 132 fb$^{-1}$. In general, the data are found to be compatible with the standard model expectation. Observed (expected) upper limits at 95% confidence level on the product of the production cross section and the relevant branching fraction are extracted for the X $\to$ YH process, and are found to be within the range of 0.05$-$2.69 (0.08$-$1.94) fb, depending on $m_\mathrm{X}$ and $m_\mathrm{Y}$. The most significant deviation from the background-only hypothesis is observed for X and Y masses of 300 and 77 GeV, respectively, with a local (global) significance of 3.33 (0.65) standard deviations.

10 data tables match query

Distributions of the transformed PNN score for the signal hypotheses of mX=280GeV, mY=125GeV in its corresponding SRs. The bin boundaries correspond to the SR boundaries of each mass point.The distributions are inclusive in the diphoton mass distribution. The gray bands in the lower panels show the statistical uncertainty in the background estimation.

Distributions of the transformed PNN score for the signal hypotheses of mX=600GeV, mY=70GeV in its corresponding SRs. The bin boundaries correspond to the SR boundaries of each mass point. The distributions are inclusive in the diphoton mass distribution. The gray bands in the lower panels show the statistical uncertainty in the background estimation.

Parametric models of the signal process for mX=600GeV, mY=70GeV in their most sensitive SR The histograms are normalized to unity. The acronym 'dof' stands for the numbers of degrees of freedom of the parametric model. The signal is modeled using a double-sided Crystal Ball (DCB) function defined as: DCB$(x)$ = \[ \begin{cases} N \cdot A_1 \cdot (B_1 - x_s)^{-m_1}, & x_s \leq -\beta_1 \\ N \cdot e^{-\frac{1}{2} x_s^2}, & -\beta_1 < x_s < \beta_2 \\ N \cdot A_2 \cdot (B_2 + x_s)^{-m_2}, & x_s \geq \beta_2 \end{cases} \] with \(x_s = \frac{x - \mu}{\sigma}\), and: \[ A_1 = \left( \frac{m_1}{\beta_1} \right)^{m_1} e^{-\frac{1}{2} \beta_1^2}, \quad B_1 = \frac{m_1}{\beta_1} - \beta_1 \] \[ A_2 = \left( \frac{m_2}{\beta_2} \right)^{m_2} e^{-\frac{1}{2} \beta_2^2}, \quad B_2 = \frac{m_2}{\beta_2} - \beta_2 \] The DCB parameters for this signal model are: \[ \begin{aligned} N &= 1.0226, & \mu &= 69.91014, & \sigma &= 0.67412 \\ \beta_1 &= 1.35, & m_1 &= 2.9491, & \beta_2 &= 1.5468, & m_2 &= 12.7113 \end{aligned} \]

More…