Observation of orbitally excited B mesons in p anti-p collisions at S**(1/2) = 1.8-TeV

The CDF collaboration Affolder, T. ; Akimoto, H. ; Akopian, A. ; et al.
Phys.Rev.D 64 (2001) 072002, 2001.
Inspire Record 511161 DOI 10.17182/hepdata.42083

We measure the relative rate of production of orbitally excited (L=1) states of B mesons (B**) by observing their decays into Bπ±. We reconstruct B mesons through semileptonic decay channels using data collected in pp¯ collisions at s=1.8TeV. The fraction of light B mesons that are produced as L=1B** states is measured to be 0.28±0.06(stat)±0.03(syst). We also measure the collective mass of the B** states, and quantify the result by quoting the (model-dependent) mass of the lowest B** state to be m(B1)=5.71±0.02GeV/c2.

1 data table

FD is considered as a quark fragmentation fraction.


Ratios of bottom meson branching fractions involving j / psi mesons and determination of b quark fragmentation fractions

The CDF collaboration Abe, F. ; Akimoto, H. ; Akopian, A. ; et al.
Phys.Rev.D 54 (1996) 6596-6609, 1996.
Inspire Record 419439 DOI 10.17182/hepdata.42295

We report a measurement of the ratios of the decay rates of the B~+, B~0 and B~0_s mesons into exclusive final states containing a J/psi meson. The final states were selected from 19.6 pb~{-1} of p-pbar collisions recorded by the Collider Detector at Fermilab. These data are interpreted to determine the bquark fragmentation fractions f_u, f_d and f_s. We also determine the branching fractions for the decay modes B~+ --> J/psi K~+, B~+ --> J/psi K~*(892)~+, B~0 --> J/psi K~0, B~0 --> J/psi K~*(892)~0 and B_s~0 --> J/psi phi(1020). We discuss the implications of these measurements to B meson decay models.

1 data table

Charge conjugated states are implied. FD is considered as a quark fragmentation fraction.


First measurement of the quark to photon fragmentation function

The ALEPH collaboration Buskulic, D. ; Casper, D. ; De Bonis, I. ; et al.
Z.Phys.C 69 (1996) 365-378, 1996.
Inspire Record 398193 DOI 10.17182/hepdata.12261

Earlier measurements at LEP of isolated hard photons in hadronic Z decays, attributed to radiation from primary quark pairs, have been extended in the ALEPH experiment to include hard photon productioninside hadron jets. Events are selected where all particles combine democratically to form hadron jets, one of which contains a photon with a fractional energyz≥0.7. After statistical subtraction of non-prompt photons, the quark-to-photon fragmentation function,D(z), is extracted directly from the measured 2-jet rate. By taking into account the perturbative contributions toD(z) obtained from anO(ααs) QCD calculation, the unknown non-perturbative component ofD(z) is then determined at highz. Provided due account is taken of hadronization effects nearz=1, a good description of the other event topologies is then found.

16 data tables

2-jet events. Variable Z has been defined as E(gamma)/(E(gamma)+E(had)), where E(gamma) is the energy of the hard photon in 'photon-jet', E(had) is the energy of the rest hadrons in jet. Ycut is jet resolution parameter (see paper).

2-jet events. Variable Z has been defined as E(gamma)/(E(gamma)+E(had)), where E(gamma) is the energy of the hard photon in 'photon-jet', E(had) is the energy of the rest hadrons in jet. Ycut is jet resolution parameter (see paper).

2-jet events. Variable Z has been defined as E(gamma)/(E(gamma)+E(had)), where E(gamma) is the energy of the hard photon in 'photon-jet', E(had) is the energy of the rest hadrons in jet. Ycut is jet resolution parameter (see paper).

More…

A DETERMINATION OF THE FRAGMENTATION FUNCTIONS OF u QUARKS INTO CHARGED PIONS

The European Muon collaboration Aubert, J.J. ; Bassompierre, G. ; Becks, K.H. ; et al.
Phys.Lett.B 160 (1985) 417-420, 1985.
Inspire Record 213987 DOI 10.17182/hepdata.49627

The fragmentation functions of u-quarks into positive and negative pions are determined from an analysis of identified pions produced in deep inelastic muon-deuterium scattering. The method adopted is not sensitive to the knowledge of the primary quark distribution functions. The fragmentation of u quarks to positive pions is found to fall less steeply in z than that to negative pions as expected in the quark parton model.

1 data table

Here Z=P(P=3)/E(P=3).