We report measurements of two-particle correlations in rapidity space between a p¯ or Λ¯ and an additional p, p¯, Λ, or Λ¯. We find evidence for local conservation of baryon number, and for the first time observe a pronounced anticorrelation between baryons with the same value of baryon number. Such an anticorrelation is expected in fragmentation models where the rapidity order of particles closely reflects their ‘‘color order,’’ as is the case, for example, in recent versions of the Lund string model.
No description provided.
Correlations in rapidity space are presented for identified π± and K± in e+e− annihilation at 29-GeV c.m. energy. Short-range KK correlations indicate local flavor compensation in the hadronization process. Long-range KK and ππ correlations prove that the initial partons carry flavor. In addition, we observe significant Kπ correlations as a result of heavy-quark decays.
No description provided.
With use of the MARK-J detector at s=34.7 GeV 21 000 e+e−→hadron events have been collected. By measurement of the asymmetry in angular energy correlations the strong coupling constant αs=0.13±0.01 (statistical)±0.02 (systematic) is determined, in complete second order, and independent of the fragmentation models and QCD cutoff values used.
DATA REQUESTED FROM THE AUTHORS.
No description provided.
Energy correlations have been measured with the MARK II detector at the PEP storage ring (Stanford Linear Accelerator Center) at c.m. energy of 29 GeV and are compared to first-order QCD predictions. Fragmentation processes are significant and limit the precision with which the first-order strong-coupling constant can be determined.
CORRELATION IS THE ENERGY WEIGHTED CROSS SECTION FOR OBSERVING THE ENERGY E1 IN THE SOLID ANGLE DOMEGA1 AND THE ANGLE E2 IN THE SOLID ANGLE DOMEGA2.SUMMED OVER ALL PAIRS OF PARTICLES IN DOMEGA1 AND DOMEGA2 AND ALL EVENTS.
MEASUREMENT OF THE STRONG COUPLING CONSTANT.