Jet production via strongly interacting color singlet exchange in p anti-p collisions

The D0 collaboration Abachi, S. ; Abbott, B. ; Abolins, M. ; et al.
Phys.Rev.Lett. 76 (1996) 734-739, 1996.
Inspire Record 400107 DOI 10.17182/hepdata.42348

A study of the particle multiplicity between jets with large rapidity separation has been performed using the D\O\ detector at the Fermilab Tevatron $p\bar{p}$ Collider operating at $\sqrt{s}=1.8$\,TeV. A significant excess of low-multiplicity events is observed above the expectation for color-exchange processes. The measured fractional excess is $1.07 \pm 0.10({\rm stat})~{ + 0.25}_{- 0.13}({\rm syst})\%$, which is consistent with a strongly-interacting color-singlet (colorless) exchange process and cannot be explained by electroweak exchange alone. A lower limit of $0.80\%$ (95\% C.L.) is obtained on the fraction of dijet events with color-singlet exchange, independent of the rapidity gap survival probability.

1 data table

'Opposite-side' jets with a large pseudorapidity separation. A cone algorithm with radius R = sqrt(d(etarap)**2+d(phi)**2)=0.7 is used for jet funding. Double negative binomial distribution (NBD) is used to parametrize the color-exchange component of the opposite-side multiplicity distribution betweeb jets. A result of extrapolation to the zero multiplicity point. Quoted systematic error is a result of combining in quadrature of the systematic errors described above.


Longitudinal double-spin asymmetry for inclusive jet production in p+p collisions at sqrt(s)=200 GeV

The STAR collaboration Abelev, B.I. ; Aggarwal, M.M. ; Ahammed, Z. ; et al.
Phys.Rev.Lett. 100 (2008) 232003, 2008.
Inspire Record 763822 DOI 10.17182/hepdata.98970

We report a new STAR measurement of the longitudinal double-spin asymmetry A_LL for inclusive jet production at mid-rapidity in polarized p+p collisions at a center-of-mass energy of sqrt(s) = 200 GeV. The data, which cover jet transverse momenta 5 < p_T < 30 GeV/c, are substantially more precise than previous measurements. They provide significant new constraints on the gluon spin contribution to the nucleon spin through the comparison to predictions derived from one global fit of polarized deep-inelastic scattering measurements.

5 data tables

(a) The raw detected jet yield in data (points) compared with the STAR Monte Carlo simulations. (b) Correlation between the reconstructed jet transverse momenta at the particle and detector levels. The points indicate the means and the vertical error bars show the r.m.s. widths of the associated particle jet distributions within the detector jet bins. The dashed line represents the condition when the particle and detector jet $p_{T}$ values are equal.

(a) The raw detected jet yield in data (points) compared with the STAR Monte Carlo simulations. (b) Correlation between the reconstructed jet transverse momenta at the particle and detector levels. The points indicate the means and the vertical error bars show the r.m.s. widths of the associated particle jet distributions within the detector jet bins. The dashed line represents the condition when the particle and detector jet $p_{T}$ values are equal.

Longitudinal double-spin asymmetry $A_{LL}$ for inclusive jet production at $\sqrt{s_{NN}}$ = 200 GeV versus jet $p_{T}$. The points show results for particle jets with statistical error bars, while the curves show predictions for NLO parton jets from one global analysis [14]. The gray boxes indicate the systematic uncertainties on the measured $A_{LL}$ values (vertical) and in the corrections to the measured jet $p_{T}$ and the conversion between particle jet and NLO parton jet $p_{T}$ (horizontal).

More…

Measurement of Transverse Single-Spin Asymmetries for Di-Jet Production in Proton-Proton Collisions at $\sqrt{s} = 200$ GeV

The STAR collaboration Abelev, B.I. ; Aggarwal, M.M. ; Ahammed, Z. ; et al.
Phys.Rev.Lett. 99 (2007) 142003, 2007.
Inspire Record 751885 DOI 10.17182/hepdata.102938

We report the first measurement of the opening angle distribution between pairs of jets produced in high-energy collisions of transversely polarized protons. The measurement probes (Sivers) correlations between the transverse spin orientation of a proton and the transverse momentum directions of its partons. With both beams polarized, the wide pseudorapidity ($-1 \leq \eta \leq +2$) coverage for jets permits separation of Sivers functions for the valence and sea regions. The resulting asymmetries are all consistent with zero and considerably smaller than Sivers effects observed in semi-inclusive deep inelastic scattering (SIDIS). We discuss theoretical attempts to reconcile the new results with the sizable transverse spin effects seen in SIDIS and forward hadron production in pp collisions.

4 data tables

Measured and calculated asymmetries vs. di-jet pseudorapidity sum for $+\hat{z}$ (left) and $−\hat{z}$ (right) beams. (a,b): Fraction of the calculated di-jet cross section with a quark (gluon) from the $+\hat{z}$ $(−\hat{z})$ beam. (c,d): Unweighted asymmetries compared with pQCD calculations [20] (histograms) for two models of quark Sivers functions fitted to SIDIS results [8]. (e,f): Asymmetries for $|\sin\zeta|$-weighted yields, compared with calculations [20, 21] based on twist-3 quark-gluon correlations. Vertical (horizontal) bars on the data indicate statistical uncertainties (bin widths). The systematic error bands exclude a $\pm12\%$ beam polarization normalization uncertainty.

Measured and calculated asymmetries vs. di-jet pseudorapidity sum for $+\hat{z}$ (left) and $−\hat{z}$ (right) beams. (a,b): Fraction of the calculated di-jet cross section with a quark (gluon) from the $+\hat{z}$ $(−\hat{z})$ beam. (c,d): Unweighted asymmetries compared with pQCD calculations [20] (histograms) for two models of quark Sivers functions fitted to SIDIS results [8]. (e,f): Asymmetries for $|\sin\zeta|$-weighted yields, compared with calculations [20, 21] based on twist-3 quark-gluon correlations. Vertical (horizontal) bars on the data indicate statistical uncertainties (bin widths). The systematic error bands exclude a $\pm12\%$ beam polarization normalization uncertainty.

Measured and calculated asymmetries vs. di-jet pseudorapidity sum for $+\hat{z}$ (left) and $−\hat{z}$ (right) beams. (a,b): Fraction of the calculated di-jet cross section with a quark (gluon) from the $+\hat{z}$ $(−\hat{z})$ beam. (c,d): Unweighted asymmetries compared with pQCD calculations [20] (histograms) for two models of quark Sivers functions fitted to SIDIS results [8]. (e,f): Asymmetries for $|\sin\zeta|$-weighted yields, compared with calculations [20, 21] based on twist-3 quark-gluon correlations. Vertical (horizontal) bars on the data indicate statistical uncertainties (bin widths). The systematic error bands exclude a $\pm12\%$ beam polarization normalization uncertainty.

More…

Transverse energy distributions within jets in p anti-p collisions at S**(1/2) = 1.8-Tev

The D0 collaboration Abachi, S. ; Abbott, B. ; Abolins, M. ; et al.
Phys.Lett.B 357 (1995) 500-508, 1995.
Inspire Record 398175 DOI 10.17182/hepdata.42372

The distribution of the transverse energy in jets has been measured in p p collisions at s =1.8 TeV TeV using the DØ detector at Fermilab. This measurement of the jet shape is made as a function of jet transverse energy in both the central and forward rapidity regions. Jets are shown to narrow both with increasing transverse energy and with increasing rapidity. Next-to-leading order partonic QCD calculations are compared to the data. Although the calculations qualitatively describe the data, they are shown to be very dependent on renormalization scale, parton clustering algorithm, and jet direction definition and they fail to describe the data in all regions consistently.

6 data tables

No description provided.

No description provided.

No description provided.

More…

Search for heavy W boson in 1.8-TeV p anti-p collisions

The D0 collaboration Abachi, S. ; Abbott, B. ; Abolins, M. ; et al.
Phys.Lett.B 358 (1995) 405-411, 1995.
Inspire Record 400396 DOI 10.17182/hepdata.42342

A search for a heavy charged gauge boson, W ′, using the decay channels W ′ → eν and W′ → τν → eνν ν is reported. The data used in the analysis were collected by the DØ experiment at the Fermilab Tevatron during the 1992-93 p p collider run from an integrated luminosity of 13.9 ± 0.8 pb −1 at s =1.8 TeV . Assuming that the neutrino from W ′ decay is stable and has a mass significantly less than m W ′ , an upper limit at the 95% confidence level is set on the cross section times branching ratio for p p → W′ → eν . A W ′ with the same couplings to quarks and leptons as the standard model W boson is excluded for m W ′ < 610 GeV/c 2 .

2 data tables

No description provided.

The W'+- is assumed has the couplings to quarks and leptons as the standard model W and neutrinos produced in WPRIME decay are stable and have a mass significantly less then M(W').


Second generation leptoquark search in p anti-p collisions at S**(1/2) = 1.8-TeV

The D0 collaboration Abachi, S. ; Abbott, B. ; Abolins, M. ; et al.
Phys.Rev.Lett. 75 (1995) 3618-3623, 1995.
Inspire Record 397099 DOI 10.17182/hepdata.42373

We report on a search for second generation leptoquarks with the D\O\ detector at the Fermilab Tevatron $p\overline{p}$ collider at $\sqrt{s}$ = 1.8 TeV. This search is based on 12.7 pb$~{-1}$ of data. Second generation leptoquarks are assumed to be produced in pairs and to decay into a muon and quark with branching ratio $\beta$ or to neutrino and quark with branching ratio $(1-\beta)$. We obtain cross section times branching ratio limits as a function of leptoquark mass and set a lower limit on the leptoquark mass of 111 GeV/c$~{2}$ for $\beta = 1 $ and 89 GeV/c$~{2}$ for $\beta = 0.5 $ at the 95\%\ confidence level.

1 data table

The cross section times branching ratios.


Measurement of the upsilon cross-section at D0 using dimuons

The D0 collaboration Abachi, S. ; Abbott, B. ; Abolins, M. ; et al.
FERMILAB-CONF-95-206-E, 1995.
Inspire Record 397850 DOI 10.17182/hepdata.43051

None

1 data table

Cross section times the branching ratio for decay into dimuons.


Search for W boson pair production in p anti-p collisions at s**(1/2) = 1.8-TeV

The D0 collaboration Abachi, S. ; Abbott, B. ; Abolins, M. ; et al.
FERMILAB-CONF-95-242-E, 1995.
Inspire Record 398747 DOI 10.17182/hepdata.43019

None

1 data table

Upper limit at the 95% C.L.


J / psi production in p anti-p collisions at s**(1/2) = 1.8-TeV

The D0 collaboration Abachi, S. ; Abbott, B. ; Abolins, M. ; et al.
Phys.Lett.B 370 (1996) 239-248, 1996.
Inspire Record 415417 DOI 10.17182/hepdata.42319

We have studied J ψ production in p p collisions at s = 1.8 TeV with the DØ detector at Fermilab using μ + μ − data. We have measured the inclusive J ψ production cross section as a function of J ψ transverse momentum, p T . For the kinematic range p T > 8 GeV/ c and |η| < 0.6 we obtain σ(p p → J ψ + X) · Br ( J ψ → μ + μ − ) = 2.08 ± 0.17( stat) ± 0.46(syst) nb. Using the muon impact parameter we have estimated the fraction of J ψ mesons coming from B meson decays to be f b = 0.35 ± 0.09(stat)±0.10(syst) and inferred the inclusive b production cross section. From the information on the event topology the fraction of nonisolated J ψ events has been measured to be f nonisol = 0.64 ± 0.08(stat)±0.06(syst). We have also obtained the fraction of J ψ events resulting from radiative decays of χ c states, f χ = 0.32 ± 0.07(stat)±0.07(syst). We discuss the implications of our measurements for charmonium production processes.

5 data tables

No description provided.

No description provided.

Integrated b-quark production cross section.

More…

Search for bottom squarks in anti-p p collisions at S**(1/2) = 1.8-TeV

The D0 collaboration Abbott, B. ; Abolins, M. ; Abramov, V. ; et al.
Phys.Rev.D 60 (1999) 031101, 1999.
Inspire Record 496902 DOI 10.17182/hepdata.42120

We report on a search for bottom squarks produced in pbarp collisions at sqrt(s) = 1.8 TeV using the D0 detector at Fermilab. Bottom squarks are assumed to be produced in pairs and to decay to the lightest supersymmetric particle (LSP) and a b quark with branching fraction of 100%. The LSP is assumed to be the lightest neutralino and stable. We set limits on the production cross section as a function of bottom squark mass and LSP mass.

1 data table

It is assumed that the S-BQ decays intp BQ and LSP with a branching fraction of 100%.