A measurement of the photon structure function F2(gamma) at Q**2 = 6.8-GeV**2.

The AMY collaboration Kojima, T. ; Nozaki, T. ; Abe, K. ; et al.
Phys.Lett.B 400 (1997) 395-400, 1997.
Inspire Record 441558 DOI 10.17182/hepdata.28320

The photon structure function F 2 γ has been measured at an average Q 2 value of 6.8 GeV 2 using data collected by the AMY detector at the TRISTAN e + e − collider. The measured F 2 γ is compared with several QCD-based parton density models.

1 data table

No description provided.


A High Q**2 measurement of the photon structure function F2(gamma)

The AMY collaboration Sahu, S.K. ; Ebara, S. ; Nozaki, T. ; et al.
Phys.Lett.B 346 (1995) 208-216, 1995.
Inspire Record 392701 DOI 10.17182/hepdata.38361

The photon structure function F 2 γ has been measured at average Q 2 values of 73 and 390 GeV 2 using data collected by the AMY detector at the TRISTAN e + e − collider. F 2 γ is observed to be increasing as ln Q 2 . The x -dependence of F 2 γ , where x is the momentum fraction carried by the parton inside the photon, is also measured. The measurements are compared with several parton density models.

3 data tables

No description provided.

No description provided.

Errors contain both statistics and systematics.


Measurement of D*+- production in two-photon processes at TRISTAN.

The AMY collaboration Takashimizu, N. ; Sasaki, T. ; Miyata, H. ; et al.
Phys.Lett.B 384 (1996) 96009331 481-486, 1996.
Inspire Record 419685 DOI 10.17182/hepdata.38328

The inclusive cross section for the production of charmed D<sup loc="post">∗±</sup> mesons in two-photon processes is measured with the AMY detector at the TRISTAN e<sup loc="post">+</sup>e<sup loc="post">−</sup> collider. D<sup loc="post">∗±</sup> mesons are identified from the distribution of charged-particle transverse momenta relative to the jet axis. A data sample corresponding to an integrated luminosity of 176 pb<sup loc="post">−1</sup> at a center-of-mass energy of 58 GeV is used to determine a cross section σ(e<sup loc="post">+</sup>e<sup loc="post">−</sup> → e<sup loc="post">+</sup>e<sup loc="post">−</sup>D<sup loc="post">∗±</sup>X) = 270 ± 49(stat) ± 38(syst) pb. The results are compared with theoretical expectations based on the Vector Meson Dominance, direct quark-parton model, and resolved photon processes.

2 data tables

No description provided.

Reduced acceptance region to compare with the TOPAZ results.


Measurement of charm production in two photon processes using inclusive lepton events at TRISTAN

The AMY collaboration Aso, T. ; Miyata, H. ; Sasaki, T. ; et al.
Phys.Lett.B 363 (1995) 249-258, 1995.
Inspire Record 401053 DOI 10.17182/hepdata.38520

Measurements of open charm production in photon-photon collisions made with the AMY detector at TRISTAN are reported. Charmed hadrons were identified by detecting the high momentum muons or electrons from their semileptonic decays. The data sample corresponds to an integrated luminosity of 275 pb −1 at an average center of mass energy of 58 GeV. Results are presented in the form of cross sections of inclusive leptons from charm for both muons and electrons. The measured cross section is 1.8 standard deviations higher than theoretical predictions based on the direct and photon-gluon fusion process, where the mass of charm quark is assumed to be 1.6 GeV.

3 data tables

Search for lepton flavour violation in e+ e- collisions at s**(1/2) = 189-GeV - 209-GeV.

The OPAL collaboration Abbiendi, G. ; Ainsley, C. ; Akesson, P.F. ; et al.
Phys.Lett.B 519 (2001) 23-32, 2001.
Inspire Record 562543 DOI 10.17182/hepdata.49819

We search for lepton flavour violating events (e mu, e tau and mu tau) that could be directly produced in e+e- annihilations, using the full available data sample collected with the OPAL detector at centre-of-mass energies between 189 GeV and 209 GeV. In general, the Standard Model expectations describe the data well for all the channels and at each sqrt(s). A single e mu event is observed where according to our Monte Carlo simulations only 0.019 events are expected from Standard Model processes. We obtain the first limits on the cross-sections sigma(e+e- -> e mu, e tau and mu tau) as a function of sqrt(s) at LEP2 energies.

1 data table

No description provided.


Measurement of |V(ub)| using b hadron semileptonic decay.

The OPAL collaboration Abbiendi, G. ; Ainsley, C. ; Akesson, P.F. ; et al.
Eur.Phys.J.C 21 (2001) 399-410, 2001.
Inspire Record 559675 DOI 10.17182/hepdata.49835

The magnitude of the CKM matrix element Vub is determined by measuring the inclusive charmless semileptonic branching fraction of beauty hadrons at OPAL based on b -> Xu l nu event topology and kinematics. This analysis uses OPAL data collected between 1991 and 1995, which correspond to about four million hadronic Z decays. We measure Br(b -> Xu l) to be (1.63 +/- 0.53 +0.55/-0.62) x 10^(-3). The first uncertainty is the statistical error and the second is the systematic error. From this analysis, Vub is determined to be: |Vub| = (4.00 +/- 0.65(stat) +0.67/-0.76(sys) +/- 0.19(HQE)) x 10^(-3). The last error represents the theoretical uncertainties related to the extraction of |Vub| from Br(b -> Xu l) using the Heavy Quark Expansion.

1 data table

CKM is Cabibbo-Kobayashi-Maskawa (CKM) matrix element. The last DSYS error comes from the theoretical uncertainty.


Measurement of the charm structure function F2(c)(gamma) of the photon at LEP.

The OPAL collaboration Abbiendi, G. ; Ainsley, C. ; Akesson, P.F. ; et al.
Phys.Lett.B 539 (2002) 13-24, 2002.
Inspire Record 587909 DOI 10.17182/hepdata.49793

The production of charm quarks is studied in deep-inelastic electron-photon scattering using data recorded by the OPAL detector at LEP at normal e+e- centre-of-mass energies from 183 to 209 GeV. The charm quarks have been identified by full reconstruction of charged D* mesons using their decays into D0pi with the D0 observed in two decay modes with charged particle final states, Kpi and K3pi. The cross-section sigma(D*) for production of charged D* in the reaction e+e- -> e+e-D*X is measured in a restricted kinematical region using two bins in Bjorken x, 0.0014 < x < 0.1 and 0.1 < x < 0.87. From sigma(D*) the charm production cross-section sigma(e+e- -> e+e- ccbar X) and the charm structure function of the photon F 2,c are determined in the region 0.0014 < x < 0.87 and 5 < Q2 < 100 GeV2. For x > 0.1 the perturbative QCD calculation at next-to-leading order agrees perfectly with the measured cross-section. For x < 0.1 the measured cross-section is 43.8 +- 14.3 +- 6.3 +- 2.8 pb with a next-to-leading order prediction of 17.0+2.9-2.3 p.b

3 data tables

The inclusive D* production cross section.

The inclusive charm quark pair cross section. The second DSYS error is due to extrapolation.

The measured structure function F2(C=CHARM). The second DSYS error is due to extrapolation.


Measurement of the low-x behavior of the photon structure function F2(gamma).

The OPAL collaboration Abbiendi, G. ; Ackerstaff, K. ; Ainsley, C. ; et al.
Eur.Phys.J.C 18 (2000) 15-39, 2000.
Inspire Record 529899 DOI 10.17182/hepdata.49907

The photon structure function F2-gamma(x,Q**2) has been measured using data taken by the OPAL detector at centre-of-mass energies of 91Gev, 183Gev and 189Gev, in Q**2 ranges of 1.5 to 30.0 GeV**2 (LEP1), and 7.0 to 30.0 GeV**2 (LEP2), probing lower values of x than ever before. Since previous OPAL analyses, new Monte Carlo models and new methods, such as multi-variable unfolding, have been introduced, reducing significantly the model dependent systematic errors in the measurement.

12 data tables

Results of F2/ALPHAE for the LEP1 data using the SW for Q**2 = 1.9 GeV**2.

Results of F2/ALPHAE for the LEP1 data using the SW for Q**2 = 3.7 GeV**2.

Results of F2/ALPHAE for the LEP1 data using the FD for Q**2 = 8.9 GeV**2.

More…

Precise determination of the Z resonance parameters at LEP: 'Zedometry'.

The OPAL collaboration Abbiendi, G. ; Ainsley, C. ; Akesson, P.F. ; et al.
Eur.Phys.J.C 19 (2001) 587-651, 2001.
Inspire Record 538108 DOI 10.17182/hepdata.49855

This final analysis of hadronic and leptonic cross-sections and of leptonic forward-backward asymmetries in e+e- collisions with the OPAL detector makes use of the full LEP1 data sample comprising 161 pb^-1 of integrated luminosity and 4.5 x 10^6 selected Z decays. An interpretation of the data in terms of contributions from pure Z exchange and from Z-gamma interference allows the parameters of the Z resonance to be determined in a model-independent way. Our results are in good agreement with lepton universality and consistent with the vector and axial-vector couplings predicted in the Standard Model. A fit to the complete dataset yields the fundamental Z resonance parameters: mZ = 91.1852 +- 0.0030 GeV, GZ = 2.4948 +- 0.0041 GeV, s0h = 41.501 +- 0.055 nb, Rl = 20.823 +- 0.044, and Afb0l = 0.0145 +- 0.0017. Transforming these parameters gives a measurement of the ratio between the decay width into invisible particles and the width to a single species of charged lepton, Ginv/Gl = 5.942 +- 0.027. Attributing the entire invisible width to neutrino decays and assuming the Standard Model couplings for neutrinos, this translates into a measurement of the effective number of light neutrino species, N_nu = 2.984 +- 0.013. Interpreting the data within the context of the Standard Model allows the mass of the top quark, mt = 162 +29-16 GeV, to be determined through its influence on radiative corrections. Alternatively, utilising the direct external measurement of mt as an additional constraint leads to a measurement of the strong coupling constant and the mass of the Higgs boson: alfa_s(mZ) = 0.127 +- 0.005 and mH = 390 +750-280 GeV.

7 data tables

The cross section for hadron production corrected to the simple kinematic acceptance region defined by SPRIME/S > 0.01. Statistical errors only are shown. Also given is the cross section value corrected for the beam energy spread to correspond to the physical cross section at the central value of SQRT(S).

The cross section for E+ E- production corrected to the simple kinematic acceptance region defined by ABS(COS(THETA(C=E-))) < 0.7 and THETA(C=ACOL) < 10 degrees. Statistical errors only are shown. Also given is the cross section value corrected for the beam energy spread to correspond to the physical cross sectionat the central value of SQRT(S).

The cross section for mu+ mu- production corrected to the simple kinematic acceptance region defined by N = M(P=3_4)**2/S > 0.01. Statistical errors only are shown. Also given is the cross section value corrected for the beam energy spread to correspond to the physical cross section at the central value of SQRT(S).

More…

Measurement of the hadronic photon structure function F2(gamma) at LEP2.

The OPAL collaboration Abbiendi, G. ; Ainsley, C. ; Akesson, P.F. ; et al.
Phys.Lett.B 533 (2002) 207-222, 2002.
Inspire Record 583115 DOI 10.17182/hepdata.49744

The hadronic structure of the photon F2gamma is measured as a function of Bjorken x and of the photon virtuality Q2 using deep-inelastic scattering data taken by the OPAL detector at LEP at e+e- centre-of-mass energies from 183 to 209 GeV. Previous OPAL measurements of the x dependence of F2gamma are extended to an average Q2 of <Q2>=780GeV2 using data in the kinematic range 0.15 < x < 0.98. The Q2 evolution of F2gamma is studied for 12.1 < <Q2> < 780GeV2 using three ranges of x. As predicted by QCD, the data show positive scaling violations in F2gamma for the central x region 0.10-0.60. Several parameterisations of F2gamma are in qualitative agreement with the measurements whereas the quark-parton model prediction fails to describe the data.

13 data tables

F2 and DSIG/DX for the EE sample in the high Q**2 region as a function of X.

Statistical correlations between the bins in the preceding table.

The measured value of F2 and DSIG/DX for the SW data sample in the Q**2 range 9 to 15 GeV**2.

More…