The existence of right-handed neutrinos with Majorana masses below the electroweak scale could help address the origins of neutrino masses, the matter-antimatter asymmetry, and dark matter. In this paper, leptonic decays of W bosons from 140 fb$^{-1}$ of 13 TeV proton-proton collisions at the LHC, reconstructed in the ATLAS experiment, are used to search for heavy neutral leptons produced through their mixing with muon or electron neutrinos in a scenario with lepton number violation. The search is conducted using prompt leptonic decay signatures. The considered final states require two same-charge leptons or three leptons, while vetoing three-lepton same-flavour topologies. No significant excess over the expected Standard Model backgrounds is found, leading to constraints on the heavy neutral lepton's mixing with muon and electron neutrinos for heavy-neutral-lepton masses. The analysis excludes $|U_{e}|^2$ values above $8\times 10^{-5}$ and $|U_μ|^2$ values above $5.0 \times 10^{-5}$ in the full mass range of 8-65 GeV. The strongest constraints are placed on heavy-neutral-lepton masses in the range 15--30 GeV of $|U_{e}|^2 < 1.1 \times 10^{-5}$ and $|U_μ|^2 < 5 \times 10^{-6}$.
Comparison between the data and estimated background at preselection level. Events entering the SRs defined in Section 5 are vetoed. The events are classified in terms of the number of leptons and their flavours, as well as the number of b-jets. The ℓ<sup>±</sup>ℓ<sup>±</sup> bins have a ≥2 signal leptons selection, with no requirement on the number of baseline leptons; the ℓ<sup>±</sup>ℓ<sup>±</sup>ℓ'<sup>∓</sup> bins have a =3 signal leptons selection. The uncertainties shown with hashed bands, include only the statistical uncertainties and the full uncertainties associated with the data-driven background estimates. The bottom panel shows the ratio of the observed data yields to the predicted background yields.
Comparison between the data and estimated background in the validation regions. The hatched band represents the total uncertainty in the estimated background.
Observed 95% confidence level (CL) exclusion limits for the (a) |U<sub>e</sub>|<sup>2</sup> and (b) |U<sub>μ</sub>|<sup>2</sup> mixing parameters versus the HNL mass. The expected (dashed line) exclusion limits are also shown. The 1σ and 2σ uncertainty bands around the expected exclusion limit reflect uncertainties in signal and background yields.
A model-agnostic search for Beyond the Standard Model physics is presented, targeting final states with at least four light leptons (electrons or muons). The search regions are separated by event topology and unsupervised machine learning is used to identify anomalous events in the full 140 fb$^{-1}$ of proton-proton collision data collected with the ATLAS detector during Run 2. No significant excess above the Standard Model background expectation is observed. Model-agnostic limits are presented in each topology, along with limits on several benchmark models including vector-like leptons, wino-like charginos and neutralinos, or smuons. Limits are set on the flavourful vector-like lepton model for the first time.
Comparison between data and the background prediction for the (a) m<sub>T</sub>(4ℓ, E<sub>T</sub><sup>miss</sup>), (b) m<sup>high</sup>(3ℓ), (c) m(Z), (d) E<sub>T</sub><sup>miss</sup>, (e) p<sub>T</sub>(Z), and (f) N<sub>jets</sub> distribution in the (a, d) 2Z 0b, (b, e) 1Z 1b 2SFOS, and (c, f) 0Z 2SFOS region, after requiring the anomaly score to be below the 90% background rejection point. The background contributions after the likelihood fit to data ('post-fit') for the background-only hypothesis are shown as filled histograms. The 'tt+X' background component includes the tt̄Z, and tt̄H processes. The 'HF ℓ' ('LF ℓ') background component refers to processes containing one non-prompt light lepton from heavy-flavour (light-flavour) hadron decays. The ratio of the data to the background prediction ('Bkg.') is shown in the lower panel. The 'Other' contribution is dominated by the tWZ production. The size of the combined statistical and systematic uncertainty in the background prediction is indicated by the blue hatched band. The upward-pointing blue arrows indicate points for which the data-to-background ('Data/Bkg.’) ratio exceeds the vertical range of the figure. The last bin contains the overflow.
Comparison between data and the background prediction for the (a) m<sub>T</sub>(4ℓ, E<sub>T</sub><sup>miss</sup>), (b) m<sup>high</sup>(3ℓ), (c) m(Z), (d) E<sub>T</sub><sup>miss</sup>, (e) p<sub>T</sub>(Z), and (f) N<sub>jets</sub> distribution in the (a, d) 2Z 0b, (b, e) 1Z 1b 2SFOS, and (c, f) 0Z 2SFOS region, after requiring the anomaly score to be below the 90% background rejection point. The background contributions after the likelihood fit to data ('post-fit') for the background-only hypothesis are shown as filled histograms. The 'tt+X' background component includes the tt̄Z, and tt̄H processes. The 'HF ℓ' ('LF ℓ') background component refers to processes containing one non-prompt light lepton from heavy-flavour (light-flavour) hadron decays. The ratio of the data to the background prediction ('Bkg.') is shown in the lower panel. The 'Other' contribution is dominated by the tWZ production. The size of the combined statistical and systematic uncertainty in the background prediction is indicated by the blue hatched band. The upward-pointing blue arrows indicate points for which the data-to-background ('Data/Bkg.’) ratio exceeds the vertical range of the figure. The last bin contains the overflow.
Comparison between data and the background prediction for the (a) m<sub>T</sub>(4ℓ, E<sub>T</sub><sup>miss</sup>), (b) m<sup>high</sup>(3ℓ), (c) m(Z), (d) E<sub>T</sub><sup>miss</sup>, (e) p<sub>T</sub>(Z), and (f) N<sub>jets</sub> distribution in the (a, d) 2Z 0b, (b, e) 1Z 1b 2SFOS, and (c, f) 0Z 2SFOS region, after requiring the anomaly score to be below the 90% background rejection point. The background contributions after the likelihood fit to data ('post-fit') for the background-only hypothesis are shown as filled histograms. The 'tt+X' background component includes the tt̄Z, and tt̄H processes. The 'HF ℓ' ('LF ℓ') background component refers to processes containing one non-prompt light lepton from heavy-flavour (light-flavour) hadron decays. The ratio of the data to the background prediction ('Bkg.') is shown in the lower panel. The 'Other' contribution is dominated by the tWZ production. The size of the combined statistical and systematic uncertainty in the background prediction is indicated by the blue hatched band. The upward-pointing blue arrows indicate points for which the data-to-background ('Data/Bkg.’) ratio exceeds the vertical range of the figure. The last bin contains the overflow.
This paper presents a search for a Higgs boson produced in association with a charm quark (cH) which allows to probe the Higgs-charm Yukawa coupling strength modifier $κ_\mathrm{c}$. Higgs boson decays to a pair of W bosons are considered, where one W boson decays to an electron and a neutrino, and the other \PW boson decays to a muon and a neutrino. The data, corresponding to an integrated luminosity of 138 fb$^{-1}$, were collected between 2016 and 2018 with the CMS detector at the LHC at a center-of-mass energy of $\sqrt{s}$ = 13 TeV. Upper limits at the 95% confidence level (CL) are set on the ratio of the measured yield to the standard model expectation for cH production. The observed (expected) upper limit is 1065 (506). When combined with the previous search for cH in the diphoton decay channel of the Higgs boson, the limits are interpreted as observed (expected) constraints at 95% CL on the value of $κ_\mathrm{c}$, $\lvertκ_\mathrm{c}\rvert$ $\lt$ 47 (51).
Upper limits of $\mu_{cH}$ at 95%CL for each data-taking period.
Two-dimensional likelihood contour of $\mu_{bkg-H+c}$ and $\mu_{cH}$.
Upper limits of $\mu_{cH}$ at 95% CL of the combined analysis
A search is presented for a new scalar resonance, X, decaying to a standard model Higgs boson and another new scalar particle, Y, in the final state where the Higgs boson decays to a $\mathrm{b\bar{b}}$ pair, while the Y particle decays to a pair of photons. The search is performed in the mass range 240$-$100 \GeV for the resonance X, and in the mass range 70$-$800 GeV for the particle Y, using proton-proton collision data collected by the CMS experiment at $\sqrt{s}$ = 13 TeV, corresponding to an integrated luminosity of 132 fb$^{-1}$. In general, the data are found to be compatible with the standard model expectation. Observed (expected) upper limits at 95% confidence level on the product of the production cross section and the relevant branching fraction are extracted for the X $\to$ YH process, and are found to be within the range of 0.05$-$2.69 (0.08$-$1.94) fb, depending on $m_\mathrm{X}$ and $m_\mathrm{Y}$. The most significant deviation from the background-only hypothesis is observed for X and Y masses of 300 and 77 GeV, respectively, with a local (global) significance of 3.33 (0.65) standard deviations.
Distributions of the transformed PNN score for the signal hypotheses of mX=280GeV, mY=125GeV in its corresponding SRs. The bin boundaries correspond to the SR boundaries of each mass point.The distributions are inclusive in the diphoton mass distribution. The gray bands in the lower panels show the statistical uncertainty in the background estimation.
Distributions of the transformed PNN score for the signal hypotheses of mX=600GeV, mY=70GeV in its corresponding SRs. The bin boundaries correspond to the SR boundaries of each mass point. The distributions are inclusive in the diphoton mass distribution. The gray bands in the lower panels show the statistical uncertainty in the background estimation.
Parametric models of the signal process for mX=600GeV, mY=70GeV in their most sensitive SR The histograms are normalized to unity. The acronym 'dof' stands for the numbers of degrees of freedom of the parametric model. The signal is modeled using a double-sided Crystal Ball (DCB) function defined as: DCB$(x)$ = \[ \begin{cases} N \cdot A_1 \cdot (B_1 - x_s)^{-m_1}, & x_s \leq -\beta_1 \\ N \cdot e^{-\frac{1}{2} x_s^2}, & -\beta_1 < x_s < \beta_2 \\ N \cdot A_2 \cdot (B_2 + x_s)^{-m_2}, & x_s \geq \beta_2 \end{cases} \] with \(x_s = \frac{x - \mu}{\sigma}\), and: \[ A_1 = \left( \frac{m_1}{\beta_1} \right)^{m_1} e^{-\frac{1}{2} \beta_1^2}, \quad B_1 = \frac{m_1}{\beta_1} - \beta_1 \] \[ A_2 = \left( \frac{m_2}{\beta_2} \right)^{m_2} e^{-\frac{1}{2} \beta_2^2}, \quad B_2 = \frac{m_2}{\beta_2} - \beta_2 \] The DCB parameters for this signal model are: \[ \begin{aligned} N &= 1.0226, & \mu &= 69.91014, & \sigma &= 0.67412 \\ \beta_1 &= 1.35, & m_1 &= 2.9491, & \beta_2 &= 1.5468, & m_2 &= 12.7113 \end{aligned} \]
A search for flavor violating decays of the Z boson to charged leptons is performed using data from proton-proton collisions at $\sqrt{s}$ = 13 TeV collected with the CMS detector at the LHC, corresponding to an integrated luminosity of 138 fb$^{-1}$. Each of the decays Z $\to$ e$μ$, Z $\to$ e$τ$, and Z $\to$$μτ$ is considered. The data are consistent with the backgrounds expected from standard model processes. For the Z $\to$ e$μ$ channel the observed (expected) 95% confidence level upper limit on the branching fraction is 1.9 (2.0) $\times$ 10$^{-7}$, which is the most stringent direct limit to date on this process; the corresponding limits for the Z $\to$ e$τ$ and Z $\to$ $μτ$ channels are 13.8 (11.4) $\times$ 10$^{-6}$ and 12.0 (5.3) $\times$ 10$^{-6}$, respectively. Additionally, the e$μ$ final state is used to search for lepton flavor violating decays of Z' resonances in the mass range from 110 to 500 GeV. No significant excess is observed above the predicted background levels.
Expected and observed 95% CL upper limits on $\mathcal{B}(\mathrm{Z}\rightarrow e\mu)$ for three BDT score bins and their combination, at $\sqrt{s} =$ 13 TeV with 138 fb$^{-1}$.
Expected and observed 95% CL upper limits on $\mathcal{B}(\mathrm{Z}\rightarrow e\mu)$ for three BDT score bins and their combination, at $\sqrt{s} =$ 13 TeV with 138 fb$^{-1}$.
Expected and observed 95% CL upper limits on $\mathcal{B}(\mathrm{Z}\rightarrow e\tau)$ in the hadronic- and leptonic-$\tau$ decay channels, and for their combination ($\sqrt{s} =$ 13 TeV, 138 fb$^{-1})$.
A search for long-lived particles originating from the decay of b hadrons produced in proton-proton collisions with a center-of-mass energy of 13 TeV at the LHC is presented. The analysis is performed on a data set recorded in 2018, corresponding to an integrated luminosity of 41.6 fb$^{-1}$. Interactions of the long-lived particles in the CMS endcap muon system would create hadronic or electromagnetic showers, producing clusters of detector hits. Selected events contain at least one such high-multiplicity cluster in the muon endcaps and require the presence of a displaced muon. The most stringent upper limits to date on the branching fraction $\mathcal{B}$(B $\to$ K$Φ$), where the long-lived particle $Φ$ decays to a pair of hadrons, are obtained for $Φ$ masses of 0.3$-$3.0 GeV and $Φ$ mean proper decay lengths in the range of 1$-$500 cm.
Distributions of the CSC cluster time shown for signal samples with m = 0.3 GeV, c$\tau_{\Phi}$ = 100 mm, m = 1.0 GeV, c$\tau_{\Phi}$ = 300 mm, m = 2.0 GeV, c$\tau_{\Phi}$ = 1000 mm and the background-enriched data.
Distributions of the CSC cluster size $N_{hits}$ shown for signal samples with m = 0.3 GeV, c$\tau_{\Phi}$ = 100 mm, m = 1.0 GeV, c$\tau_{\Phi}$ = 300 mm, m = 2.0 GeV, c$\tau_{\Phi}$ = 1000 mm and the background-enriched data.
Distributions of the $\Delta\Phi$ between the CSC cluster and the trigger muon, shown for signal samples with m = 0.3 GeV c$\tau_{\Phi}$ = 100 mm, m = 1.0 GeV c$\tau_{\Phi}$ = 300 mm, m = 2.0 GeV c$\tau_{\Phi}$ = 1000 mm and the background-enriched data.
Using proton-proton collision data collected by the CMS experiment at $\sqrt{s}$ = 13 TeV in 2016$-$2018, corresponding to an integrated luminosity of 140 fb$^{-1}$, the first full reconstruction of the three vector B meson states, B$^{*+}$, B$^{*0}$, and B$^{*0}_\text{s}$, is performed. The mass differences between the excited mesons and their corresponding ground states are measured to be $m(\text{B}^{*+}) - m(\text{B}^+)$ = 45.277 $\pm$ 0.039 $\pm$ 0.027 MeV, $m(\text{B}^{*0}) - m(\text{B}^0)$ = 45.471 $\pm$ 0.056 $\pm$ 0.028 MeV, and $m(\text{B}^{*0}_\text{s}) - m(\text{B}_\text{s})$ = 49.407 $\pm$ 0.132 $\pm$ 0.041 MeV, where the first uncertainties are statistical and the second are systematic. These results improve on the precision of previous measurements by an order of magnitude.
The measured mass differences between vector and ground B meson states.
Extracted masses of $\mathrm{B}^{*+}$, $\mathrm{B}^{*0}$, and $\mathrm{B}^{*0}_{\mathrm{s}}$ mesons. The values are obtained using the measurements in Table 1 and the ground state masses from PDG 2024 (S. Navas et al. (Particle Data Group), Phys. Rev. D 110, 030001 (2024)), which are the source of the last uncertainties.
Extracted mass differences between vector B meson states of different flavour. The values are obtained using the measurements in Table 4 and the ground state mass differences from PDG 2024 (S. Navas et al. (Particle Data Group), Phys. Rev. D 110, 030001 (2024)), which are the source of the last uncertainties.
A reinterpretation of a prior narrow-resonance search is performed to investigate the resonant production of pairs of dijet resonances via broad mediators. This analysis targets events with four resolved jets, requiring dijet invariant masses greater than 0.2 TeV and four-jet invariant masses greater than 1.6 TeV. The search uses a data sample corresponding to an integrated luminosity of 138 fb$^{-1}$ collected by the CMS experiment in proton-proton collisions at $\sqrt{s}$ = 13 TeV. The reinterpretation considers the production of new heavy four-jet resonances, with widths ranging from 1.5 to 10% of their mass, which decay to a pair of dijet resonances. This analysis probes resonant production in the four-jet and dijet mass distributions. Upper limits at 95% confidence level and significances are reported on the production cross section of new resonances as functions of their widths and masses, between 2 and 10 TeV. In particular, at a four-jet resonance mass of 8.6 TeV, the local (global) significance ranges from 3.9 (1.6) to 3.6 (1.4) standard deviations (s.d.) as the resonance width is increased from 1.5 to 10%. This relative insensitivity to the choice of width indicates that a broad resonance is an equally valid interpretation of this excess. The broad resonance hypothesis at a resonance mass of 8.6 TeV is supported by the presence of an event with a four-jet mass of 5.8 TeV and an average dijet mass of 2.0 TeV. Also, we report the reinterpretation of a second effect, at a four-jet resonance mass of 3.6 TeV, which has a local (global) significance of up to 3.9 (2.2) s.d.
Observed number of events within bins of the four-jet mass and the average mass of the two dijets.
Observed number of events within bins of the four-jet mass and the ratio $\alpha$, which is the average dijet mass divided by the four-jet mass.
Predictions of a leading order (LO) QCD simulation, normalized to an integrated luminosity of 138 fb$^{-1}$. The number of events are examined within bins of the four-jet mass and the average mass of the two dijets.
An analysis of the flavour structure of dimension-6 effective field theory (EFT) operators in multilepton final states is presented, focusing on the interactions involving Z bosons. For the first time, the flavour structure of these operators is disentangled by simultaneously probing the interactions with different quark generations. The analysis targets the associated production of a top quark pair and a Z boson, as well as diboson processes in final states with at least three leptons, which can be electrons or muons. The data were recorded by the CMS experiment in the years 2016$-$2018 in proton-proton collisions at a centre-of-mass energy of 13 TeV and correspond to an integrated luminosity of 138 fb$^{-1}$. Consistency with the standard model of particle physics is observed and limits are set on the selected Wilson coefficients, split into couplings to light- and heavy-quark generations.
Summary of the limits obtained for the Wilson coefficients.
Likelihood scan of cHqMRe1122 versus cHqMRe33. Other Wilson coefficients are fixed to zero.
Likelihood scan of cHq3MRe1122 versus cHq3MRe33. Other Wilson coefficients are fixed to zero.
A measurement of the angular structure of jets containing a prompt D$^0$ meson and of inclusive jets in proton-proton collisions at the LHC at a center-of-mass energy of 5.02 TeV is presented. The data corresponding to an integrated luminosity of 301 pb$^{-1}$ were collected by the CMS experiment in 2017. Two jet grooming algorithms, late-$k_\mathrm{T}$ and soft drop, are used to study the intrajet radiation pattern using iterative Cambridge$-$Aachen declustering. The splitting-angle distributions of jets with transverse momentum ($p_\mathrm{T}$) of around 100 GeV, obtained with these two algorithms, show that there is a shift of the distribution for jets containing a prompt D$^0$ meson with respect to inclusive jets. The shift observed in the late-$k_\mathrm{T}$ grooming approach is consistent with the dead-cone effect, whereas the shift for splittings selected with the soft-drop algorithm appears to be dominated by gluon splitting to charm quark-antiquark pairs. The measured distributions are corrected to the particle level and can be used to constrain model predictions for the substructure of high-$p_\mathrm{T}$ charm quark jets.
The unfolded late-$k_{T}$ angular distribution for prompt $D^{0}$ jets.
The unfolded late-$k_{T}$ angular distribution for inclusive jets.
The unfolded SD angular distribution for prompt $D^{0}$ jets.