We have analyzed the two-prong final states in π+p interactions at 3.9 GeVc. Our result for elastic scattering is σ (elastic) = 6.50±0.1 mb (statistical error only). We find the elastic slope to be 6.61±0.14 (GeVc)−2. We find the elastic forward cross section to be 40.0±1.4 mb(GeVc)2. We have applied a longitudinal-momentum analysis to the one-pion-production channel. We find the cross section for the reaction π++p→π++π0+p to be 2.30±0.06 mb and that for π++p→π++π++n to be 1.45±0.05 mb. For resonance-production cross sections in these channels we find Δ(1236)=0.60±0.07 mb, ρ(760)=0.86±0.06 mb, and diffraction dissociation = 1.69±0.11 mb. We find that we can satisfactorily fit all distributions in the one-pion-production channel without assuming any phase-space production. In the missing-mass channel we observe dominant Δ++(1236) production plus evidence for A2+ production.
No description provided.
No description provided.
No description provided.
None
'1'.
No description provided.
No description provided.
None
No description provided.
None
'1'. '2'. '3'. '4'.
'1'.
'1'.
None
'1'. '2'. '3'.
'2'.
'2'.
None
'1'. '2'. '3'.
No description provided.
No description provided.
Detailed measurements of the production of charged π mesons in proton-proton collisions are reported. The observed results are compared with the "isobar" and "one-pion exchange" models and for single production are in agreement if only the "resonant" part of the π−p cross section is used and if the angular distribution cos16θ is introduced for the production of the N1* isobar. The effects of higher resonances are also considered.
No description provided.
No description provided.
No description provided.
None
'1'. '2'. '3'. '4'.
No description provided.