Observation of a New Charmed - Strange Meson

The ARGUS collaboration Albrecht, H. ; Glaser, R. ; Harder, G. ; et al.
Phys.Lett.B 230 (1989) 162, 1989.
Inspire Record 282570 DOI 10.17182/hepdata.45175

Using the ARGUS detector at the DORIS II e + e − storage ring at DESY, we have obtained evidence for a new charmed-strange meson which decays into D *+ K 0 . Its mass is observed to be 2535.9±0.6±2.0 MeV/ c 2 and its width to be less than 4.6 MeV/ c 2 at the 90% confidence level. No structure is observed at this mass in the D + K 0 invariant mass spectrum, which suggests that an unnatural spin-parity is preferred.

0 data tables match query

Resonance Decomposition of the $D^*$0 (2420) Through a Decay Angular Analysis

The ARGUS collaboration Albrecht, H. ; Glaser, R. ; Harder, G. ; et al.
Phys.Lett.B 232 (1989) 398-404, 1989.
Inspire Record 280943 DOI 10.17182/hepdata.45198

Using data collected with the ARGUS detector, we have performed a decay angular analysis of the enhancement, previously known as the D ∗ (2420), seen in the final state D ∗ (2010) + π − . We thereby exhibit that the observed broad structure is actually due to two relatively narrow resonances, one of which is identified as the D ∗ (2459) 0 , while the massof the other is measured to be (2414±2±5) MeV/ c 2 . The results of the analysis are in good agreement with the interpretation of the two states as L =1 D mesons of spin-parities 2 + and 1 + respectively.

0 data tables match query

Inclusive production of D0, D+ and D*+ (2010) mesons in B decays and nonresonant e+ e- annihilation at 10.6-GeV

The ARGUS collaboration Albrecht, H. ; Ehrlichmann, H. ; Hamacher, T. ; et al.
Z.Phys.C 52 (1991) 353-360, 1991.
Inspire Record 315059 DOI 10.17182/hepdata.14845

Using the ARGUS detector at thee+e− storage ring DORIS II at DESY, we have measured the inclusive production ofD0,D+ andD*(2010)+ mesons inB decays and in nonresonante+e− annihilation around 10.6 GeV. The inclusive branching ratios forB decays toD0,D+ andD*+ mesons are found to be (52.2±8.2±3.5)%, (27.2±6.3±3.5)% and (34.8±6.0±3.5)% respectively. Thus,D0 andD+ production account for about 70% of the charm produced inB decays, neglectingb→u contributions to the total width. The production cross sections and momentum spectra for continuume+e− annihilation are also presented.

0 data tables match query

Observation of the D*0 (2459) in e+ e- Annihilation

The ARGUS collaboration Albrecht, H. ; Bockmann, P. ; Glaser, R. ; et al.
Phys.Lett.B 221 (1989) 422-426, 1989.
Inspire Record 268577 DOI 10.17182/hepdata.29827

Using the ARGUS detector at the DORIS II storage ring at DESY, we have observed a charmed meson of mass (2455±3±5) MeV/c2, decaying to D + π − . The natural width of this state is determined to be (15 +13+5 −10−10 ) MeV c 2 . The fragmentation function is hard, as expected for a leading charmed particle from nonresonant e + e − annihilation. Analysis of the decay angular distribution supports the hypothesis that the observed state is an L =1 excited charmed meson with spin-parity 2 + .

0 data tables match query

Version 2
Production of D*+- mesons with dijets in deep-inelastic scattering at HERA.

The H1 collaboration Aktas, A. ; Andreev, V. ; Anthonis, T. ; et al.
Eur.Phys.J.C 51 (2007) 271-287, 2007.
Inspire Record 736052 DOI 10.17182/hepdata.45686

Inclusive D* production is measured in deep-inelastic ep scattering at HERA with the H1 detector. In addition, the production of dijets in events with a D* meson is investigated. The analysis covers values of photon virtuality 2< Q^2 <=100 GeV^2 and of inelasticity 0.05<= y <= 0.7. Differential cross sections are measured as a function of Q^2 and x and of various D* meson and jet observables. Within the experimental and theoretical uncertainties all measured cross sections are found to be adequately described by next-to-leading order (NLO) QCD calculations, based on the photon-gluon fusion process and DGLAP evolution, without the need for an additional resolved component of the photon beyond what is included at NLO. A reasonable description of the data is also achieved by a prediction based on the CCFM evolution of partons involving the k_T-unintegrated gluon distribution of the proton.

0 data tables match query

Measurement of D* meson cross sections at HERA and determination of the gluon density in the proton using NLO QCD.

The H1 collaboration Adloff, C. ; Anderson, M. ; Andreev, V. ; et al.
Nucl.Phys.B 545 (1999) 21-44, 1999.
Inspire Record 481112 DOI 10.17182/hepdata.44123

With the H1 detector at the ep collider HERA, D* meson production cross sections have been measured in deep inelastic scattering with four-momentum transfers Q^2>2 GeV2 and in photoproduction at energies around W(gamma p)~ 88 GeV and 194 GeV. Next-to-Leading Order QCD calculations are found to describe the differential cross sections within theoretical and experimental uncertainties. Using these calculations, the NLO gluon momentum distribution in the proton, x_g g(x_g), has been extracted in the momentum fraction range 7.5x10^{-4}< x_g <4x10^{-2} at average scales mu^2 =25 to 50 GeV2. The gluon momentum fraction x_g has been obtained from the measured kinematics of the scattered electron and the D* meson in the final state. The results compare well with the gluon distribution obtained from the analysis of scaling violations of the proton structure function F_2.

0 data tables match query

Measurement of D*+- meson production and F2(c) in deep inelastic scattering at HERA.

The H1 collaboration Adloff, C. ; Andreev, V. ; Andrieu, B. ; et al.
Phys.Lett.B 528 (2002) 199-214, 2002.
Inspire Record 561885 DOI 10.17182/hepdata.46834

The inclusive production of D^{*+-}(2010) mesons in deep-inelastic scattering is studied with the H1 detector at HERA. In the kinematic region 1<Q^2<100 GeV^2 and 0.05<y<0.7 an e^+p cross section for inclusive D^(*+-) meson production of 8.50+- 0.42 (stat.)^(+1.21)_(-1.00) (syst.) nb is measured in the visible range p_(tD^*)>1.5 GeV and |\eta_(D^*)|<1.5. Single and double differential inclusive D^(*+-) meson cross sections are compared to perturbative QCD calculations in two different evolution schemes. The charm contribution to the proton structure, F_2^c(x,Q^2), is determined by extrapolating the visible charm cross section to the full phase space. This contribution is found to rise from about 10% at Q^2 = 1.5 GeV^2 to more than 25% at Q^2 = 60 GeV^2 corresponding to x values ranging from 5*10^(-5) to 3*10^(-3)$.

0 data tables match query

Inclusive D0 and D*+- production in neutral current deep inelastic e p scattering at HERA.

The H1 collaboration Adloff, C. ; Aid, S. ; Anderson, M. ; et al.
Z.Phys.C 72 (1996) 593-605, 1996.
Inspire Record 421105 DOI 10.17182/hepdata.44713

First results on inclusive D0 and D* production in deep inelastic $ep$ scattering are reported using data collected by the H1 experiment at HERA in 1994. Differential cross sections are presented for both channels and are found to agree well with QCD predictions based on the boson gluon fusion process. A charm production cross section for 10GeV$~2\le Q~2\le100$GeV$~2$ and $0.01\le y\le0.7$ of $\sigma\left(ep\rightarrow c\overlinecX\right) = (17.4 \pm 1.6 \pm 1.7 \pm 1.4)$nb is derived. A first measurement of the charm contribution F2_charm(x,Q~2) to the proton structure function for Bjorken $x$ between $8\cdot10~{-4}$ and $8\cdot10~{-3}$ is presented. In this kinematic range a ratio F2_charm/F2= 0.237\pm0.021{+0.043\atop-0.039}$ is observed.

0 data tables match query

Production Cross-section and Electroweak Asymmetry of $D^*$ and $D$ Mesons Produced in $e^+ e^-$ Annihilations at 29-{GeV}

Baringer, Philip S. ; Bylsma, B.G. ; DeBonte, R. ; et al.
Phys.Lett.B 206 (1988) 551-556, 1988.
Inspire Record 23360 DOI 10.17182/hepdata.6192

The production of D * and D mesons has been studied in e + e − annihilations at √s = 29GeV. The data, corresponding to an integrated luminosity of 300 pb −1 , were obtained using the HRS detector at PEP. The cross section is measured to be R (D 0 + D + ) = 2.40±0.35 and we determine the electroweak asymmetry to be −9.9 ± 2.7%, which corresponds to an axial vector coupling constant product g e g c = 0.26 ± 0.07.

0 data tables match query

Charged $D^*$ Production in $e^+ e^-$ Annihilation

The JADE collaboration Bartel, W. ; Becker, L. ; Bowdery, C. ; et al.
Phys.Lett.B 146 (1984) 121-125, 1984.
Inspire Record 202785 DOI 10.17182/hepdata.30496

None

0 data tables match query