The STAR Collaboration reports on the photoproduction of $\pi^+\pi^-$ pairs in gold-gold collisions at a center-of-mass energy of 200 GeV/nucleon-pair. These pion pairs are produced when a nearly-real photon emitted by one ion scatters from the other ion. We fit the $\pi^+\pi^-$ invariant mass spectrum with a combination of $\rho$ and $\omega$ resonances and a direct $\pi^+\pi^-$ continuum. This is the first observation of the $\omega$ in ultra-peripheral collisions, and the first measurement of $\rho-\omega$ interference at energies where photoproduction is dominated by Pomeron exchange. The $\omega$ amplitude is consistent with the measured $\gamma p\rightarrow \omega p$ cross section, a classical Glauber calculation and the $\omega\rightarrow\pi^+\pi^-$ branching ratio. The $\omega$ phase angle is similar to that observed at much lower energies, showing that the $\rho-\omega$ phase difference does not depend significantly on photon energy. The $\rho^0$ differential cross section $d\sigma/dt$ exhibits a clear diffraction pattern, compatible with scattering from a gold nucleus, with 2 minima visible. The positions of the diffractive minima agree better with the predictions of a quantum Glauber calculation that does not include nuclear shadowing than with a calculation that does include shadowing.
The $\pi^+\pi^-$ invariant-mass distribution for all selected $\pi\pi$ candidates with $p_T~<~100~\textrm{MeV}/c$.
The ratio $|B/A|$ of amplitudes of nonresonant $\pi^+\pi^-$ and $\rho^0$ mesons in the present STAR analysis.
The ratio $|B/A|$ of amplitudes of nonresonant $\pi^+\pi^-$ and $\rho^0$ mesons in the previous STAR analysis, Phys. Rev. C 77 034910 (2008).
The TOTEM experiment at the CERN LHC has measured elastic proton-proton scattering at the centre-of-mass energy $\sqrt{s}$ = 8 TeV and four-momentum transfers squared, |t|, from 6 x $10^{-4}$ GeV$^2$ to 0.2 GeV$^2$. Near the lower end of the |t|-interval the differential cross-section is sensitive to the interference between the hadronic and the electromagnetic scattering amplitudes. This article presents the elastic cross-section measurement and the constraints it imposes on the functional forms of the modulus and phase of the hadronic elastic amplitude. The data exclude the traditional Simplified West and Yennie interference formula that requires a constant phase and a purely exponential modulus of the hadronic amplitude. For parametrisations of the hadronic modulus with second- or third-order polynomials in the exponent, the data are compatible with hadronic phase functions giving either central or peripheral behaviour in the impact parameter picture of elastic scattering. In both cases, the $\rho$-parameter is found to be 0.12 $\pm$ 0.03. The results for the total hadronic cross-section are $\sigma_{tot}$ = (102.9 $\pm$ 2.3) mb and (103.0 $\pm$ 2.3) mb for central and peripheral phase formulations, respectively. Both are consistent with previous TOTEM measurements.
Differential cross-section.
None
'1'. '2'.
'1'.
No description provided.
K − p elastic scattering at 10 GeV/ c is studied on ∼3600 bubble chamber events. The elastic cross section is found to be σ el = (3.20 ± 0.14)mb and the ratio σ el σ tot = (0.142 ± 0.006) , that is below the upper limit of 0.185 suggested in a model by Van Hove. The value of the forward differential cross section is consistent with zero real part to the scattering amplitude. The slope of d σ d t is similar to that for π ± and greater than that of K + , with no evidence for shrinkage of the diffraction peak. No events of backward scattering were observed. The Regge-pole model of Phillips and Rarita gives a good fit to the data.
No description provided.
Differential cross section and polarization distributions are presented for elastic p p scattering at incident momenta of 1.73, 2.13, 2.37 and 2.97 GeV/ c . The data have been analysed in terms of a 5-parameter diffraction model. In terms of this model the difference in the shape of the differential cross sections for p p and pp elastic scattering is a result of the strong absorption in the p p system.
'1'. '2'. '3'. '4'.
'3'.
'2'.
About 100 000 pictures, with an average of ∼12K + per picture, taken in the 81 cm Saclay deuterium bubble chamber exposed to a separated 3 GeV/c K + beam have been analysed for the reaction K + d→K 0 pp in the 1-prong V 0 and 2-prong V 0 topologies. 214 such events have been found allowing a determination of the differential cross-section. A comparison with the prediction of Rarita and Schwarzschild yields reasonable agreement; in particular a large real part is inferred for the amplitude for the reaction K + n→K 0 p.
The errors are statistical only.
The errors are statistical only. To evaluate the cross section on neutron thE data are divided on (1-FORMFACTOR(C=DEUT). For definition of the formfactor see L. Durand, Phys. Rev. 115 (1959) 1020.
None
No description provided.
No description provided.
The differential cross-section of the reaction γ + p → p + π 0 was measured at the Deutsches Elektronen-Synchrotron, Hamburg, at mean photon energies of 4.0, 5.0 and 5.8 GeV and pion center of mass angles between 0° and 60°. The results are compared wiht theoretical calculations based on Reggeized vector meson exchange.
Axis error includes +- 7/7 contribution.
Axis error includes +- 7/7 contribution.
Axis error includes +- 7/7 contribution.
None
No description provided.
No description provided.
No description provided.
Results are given for the production differential cross sections and the ω decay angular distribution in terms of the ω spin density matrix elements.
PAPER ALSO GIVES OFF-DIAGONAL ELEMENTS OF THE ERROR COVARIANCE MATRIX.
PAPER ALSO GIVES OFF-DIAGONAL ELEMENTS OF THE ERROR COVARIANCE MATRIX.
No description provided.