A first search is presented for vector-like leptons (VLLs) decaying into a light long-lived pseudoscalar boson and a standard model $τ$ lepton. The pseudoscalar boson is assumed to have a mass below the $τ^+τ^-$ threshold, so that it decays exclusively into two photons. It is identified using the CMS muon system. The analysis is carried out using a data set of proton-proton collisions at a center-of-mass energy of 13 TeV collected by the CMS experiment in 2016-2018, corresponding to an integrated luminosity of 138 fb$^{-1}$. Selected events contain at least one pseudoscalar boson decaying electromagnetically in the muon system and at least one hadronically decaying $τ$ lepton. No significant excess of data events is observed compared to the background expectation. Upper limits are set at 95% confidence level on the vector-like lepton production cross section as a function of the VLL mass and the pseudoscalar boson mean proper decay length. The observed and expected exclusion ranges of the VLL mass extend up to 700 and 670 GeV, respectively, depending on the pseudoscalar boson lifetime.
Distributions of the number of hits in the cluster (Nhits) for the DT category in the signal region (SR). The last histogram bin contains all overflow events.
The cluster reconstruction efficiency, including both DT and CSC clusters, as a function of the simulated r and |z| decay positions of the pseudoscalar into photons in events with MET > 200 GeV, for a VLL mass of 700 GeV and a pseudoscalar mass of 2 GeV, and a range of ctau values uniformly distributed between 0.01 and 0.1 m.
Distributions of the number of hits in the cluster (Nhits) for the CSC category in the signal region (SR). The last histogram bin contains all overflow events.
A search for a new charged particle X with mass between 0.3 and 2.0 TeV decaying to a W boson and a photon is presented, using proton-proton collision data at a center-of-mass energy of 13 TeV, collected by the CMS experiment and corresponding to an integrated luminosity of 138 fb$^{-1}$. Particle X has electric charge $\pm$ 1 and is assumed to have spin 0. The search is performed using the electron and muon decays of the W boson. No significant excess above the predicted background is observed. The upper limit at 95% confidence level on the product of the production cross section of the X and its branching fraction to a W boson and a photon is found to be 94 (137) fb for a 0.3 TeV resonance and 0.75 (0.81) fb for a 2.0 TeV resonance, for an X width-to-mass ratio of 0.01% (5%). This search presents the most stringent constraints to date on the existence of such resonances across the probed mass range. A statistical combination with an earlier study based on the hadronic decay mode of the W boson is also performed, and the upper limit at 95% confidence level for a 2.0 TeV resonance is reduced to 0.50 (0.63) fb for an X width-to-mass ratio of 0.01% (5%).
The red, blue, and orange curves are the product of detector acceptance and analysis selections efficiency for different particle mass assumptions---300, 1000, and 2000 GeV, respectively---to pass sequential requirements, for the electron channel.
The red, blue, and orange curves are the product of detector acceptance and analysis selections efficiency for different particle mass assumptions---300, 1000, and 2000 GeV, respectively---to pass sequential requirements, for the muon channel.
The product of detector acceptance and analysis selection efficiency in the electron channel as functions of the particle X mass. Three analysis requirements are applied consecutively: event reconstruction, HLT, and final signal selection. The product of detector acceptance and analysis selection efficiencies are shown at each stage in red, blue, and orange, respectively.
Searches for pair-produced multijet signatures using data corresponding to an integrated luminosity of 128 fb$^{-1}$ of proton-proton collisions at $\sqrt{s}$ = 13 TeV are presented. A data scouting technique is employed to record events with low jet scalar transverse momentum sum values. The electroweak production of particles predicted in $R$-parity violating supersymmetric models is probed for the first time with fully hadronic final states. This is the first search for prompt hadronically decaying mass-degenerate higgsinos, and extends current exclusions on $R$-parity violating top squarks and gluinos.
Fit results for the pair produced merged three-quark average jet mass ($\bar{m}$) distribution, after the selection of $p_{\rm T}>300$ GeV, $|\eta|<2.4$, and $\tau_{32,\mathrm{DDT}}<0$ on both leading and subleading jet and $A_m<0.15$
Fit results for the pair produced merged three-quark average jet mass ($\bar{m}$) distribution, after the selection of $p_{\rm T}>300$ GeV, $|\eta|<2.4$, and $N^1_{2,\mathrm{DDT}}<0$ on both leading and subleading jet
Fit results for the region 1 of pair produced resolved three jet mass ($m_{jjj}$) distribution, after $H_{\rm T}>600$ GeV, $|\eta|<2.4$, sixth jet $p_{\rm T}>40$ GeV, $D^2_{[(6,3)+(3,2)]}<1.25$, $A_m <0.25$, $\Delta>250$ GeV, $D^2_{[3,2]}<0.05$
A search for long-lived particles (LLPs) decaying in the CMS muon detectors is presented. A data sample of proton-proton collisions at $\sqrt{s}$ = 13 TeV corresponding to an integrated luminosity of 138 fb$^{-1}$ recorded at the LHC in 2016-2018, is used. The decays of LLPs are reconstructed as high multiplicity clusters of hits in the muon detectors. In the context of twin Higgs models, the search is sensitive to LLP masses from 0.4 to 55 GeV and a broad range of LLP decay modes, including decays to hadrons, $\tau$ leptons, electrons, or photons. No excess of events above the standard model background is observed. The most stringent limits to date from LHC data are set on the branching fraction of the Higgs boson decay to a pair of LLPs with masses below 10 GeV. This search also provides the best limits for various intervals of LLP proper decay length and mass. Finally, this search sets the first limits at the LHC on a dark quantum chromodynamic sector whose particles couple to the Higgs boson through gluon, Higgs boson, photon, vector, and dark-photon portals, and is sensitive to branching fractions of the Higgs boson to dark quarks as low as 2 $\times$ 10$^{-3}$.
The cluster reconstruction efficiency, including both DT and CSC clusters, as a function of the simulated r and |z| decay positions of the particle S decaying to $d\bar{d}$ in events with $\it{p}_{T}^\text{miss} >$ 200 GeV, for a mass of 40 GeV and a range of c$\tau$ values uniformly distributed between 1 and 10 m.
The cluster reconstruction efficiency, including both DT and CSC clusters, as a function of the simulated r and |z| decay positions of the particle S decaying to $d\bar{d}$ in events with $\it{p}_{T}^\text{miss} >$ 200 GeV, for a mass of 40 GeV and a range of c$\tau$ values uniformly distributed between 1 and 10 m.
The DT cluster reconstruction efficiency as a function of the simulated r decay positions of S decaying to $d\bar{d}$ in events with $\it{p}_{T}^\text{miss} >$ 200 GeV, for a mass of 40 GeV and a range of c$\tau$ values between 1 and 10 m. The clusters are selected from signal events satisfying the $\it{p}_{T}^\text{miss} >$ 200 GeV requirement.
A search for high-mass dimuon resonance production in association with one or more b quark jets is presented. The study uses proton-proton collision data collected with the CMS detector at the LHC corresponding to an integrated luminosity of 138 fb$^{-1}$ at a center-of-mass energy of 13 TeV. Model-independent limits are derived on the number of signal events with exactly one or more than one b quark jet. Results are also interpreted in a lepton-flavor-universal model with Z$'$ boson couplings to a bb quark pair ($g_\mathrm{b}$), an sb quark pair ($g_\mathrm{b}\delta_\mathrm{bs}$), and any same-flavor charged lepton ($g_\ell$) or neutrino pair ($g_\nu$), with $\left|g_{\nu}\right| = \left|g_\ell\right|$. For a Z$'$ boson with a mass $m_{\mathrm{Z}'}$ = 350 GeV (2 TeV) and $\left|\delta_\mathrm{bs}\right|$$\lt$ 0.25, the majority of the parameter space with 0.0057 $\lt$$\left|g_\ell\right|$$\lt$ 0.35 (0.25 $\lt$$\left|g_\ell\right|$$\lt$ 0.43) and 0.0079 $\lt$$\left|g_\mathrm{b}\right|$$\lt$ 0.46 (0.34 $\lt$$\left|g_\mathrm{b}\right|$$\lt$ 0.57) is excluded at 95% confidence level. Finally, constraints are set on a Z$'$ model with parameters consistent with low-energy b $\to$ s$\ell\ell$ measurements. In this scenario, most of the allowed parameter space is excluded for a Z$'$ boson with 350 $\lt m_{\mathrm{Z}'}$ $\lt$ 500 GeV, while the constraints are less stringent for higher $m_{\mathrm{Z}'}$ hypotheses. This is the first dedicated search at the LHC for a high-mass dimuon resonance produced in association with multiple b quark jets, and the constraints obtained on models with this signature are the most stringent to date.
Feynman diagrams of $\mathrm{Z'}\to\mu^{-}\mu^{+}$ with a $\mathrm{Z'}$ boson produced via $\mathrm{b}\overline{\mathrm{b}}\to\mathrm{Z'}$, with one $\mathrm{b}$ quark in the final state.
Feynman diagrams of $\mathrm{Z'}\to\mu^{-}\mu^{+}$ with a $\mathrm{Z'}$ boson produced via $\mathrm{s}\overline{\mathrm{b}}\to\mathrm{Z'}$, with one $\mathrm{b}$ quark in the final state.
Feynman diagrams of $\mathrm{Z'}\to\mu^{-}\mu^{+}$ with a $\mathrm{Z'}$ boson produced via $\mathrm{b}\overline{\mathrm{b}}\to\mathrm{Z'}$, with two $\mathrm{b}$ quarks in the final state.