Samples of 9200 muon-neutrino and 3800 muon-antineutrino interactions on nuclei were obtained with the fine-grain calorimeter of the CHARM Collaboration at the CERN 200 GeV narrow-band neutrino beam. The interactions were classified as either neutral-current or charged-current processes on an event-by-event basis. Neutral-current and charged-current cross sections in neutrino and antineutrino interactions are presented. From these results we deduce a statistically significant contribution of right-handed coupling to the neutral hadronic current, and a value of the electroweak mixing angle corresponding to sin 2 θ = 0.220 ± 0.014.
Measured charged current total cross section.
Measured charged current total cross section.
No description provided.
The transverse momenta of charged hadrons produced in high energy muon-proton scattering have been studied. The average squared transverse momentum 〈 p 2 ⊥ 〉 shows a strong dependence on z = E h / v characteristic of intrinsic momentum effects and a significant rise as a function of s = W 2 . The W 2 , q 2 , x and z dependences of the data are compared with the predictions of a perturbative QCD model.
No description provided.
No description provided.
No description provided.
Using 20.5 GeV electrons on protons, we measured inclusive π 0 's (of transverse momentum, p T , from 0 to 1.4 GeV/ c ) produced by virtual photons of energy, ν, from 4 to 16.5 GeV and four-momentum squared, q 2 , from −1.8 to −8.5 (GeV/ c ) 2 . Comparing with charged pion data, we find σ π 0 = 1 2 (σ π + + σ π − ) , supporting the quark model. Photon knockout of a quark is favored as the interpretation of these data because of scaling in z = E π / ν and similarity in z -dependence of other pion production data. Consistent with this interpretation are the dependence of 〈 p T 〉 on q 2 , the azimuthal dependence, and fits to the constituent interchange model. We also observe a possible p T −4 dependence at large | q 2 | over a limited p T range.
No description provided.
No description provided.
No description provided.
Using 13.5-GeV beams at Stanford Linear Accelerator Center, we have compared electron and positron inelastic scattering over the range 1.2<|q2|<3.3 (GeV/c)2, 2<ν<9.5 GeV for the four-momentum and energy transfers, respectively. We find the ratio of the cross sections to be e+e−=1.0027±0.0035 (including statistical and systematic effects), with no significant dependence on q2 or ν. This result has appreciably smaller errors than previous attempts to find two-photon-exchange effects in electron or muon scattering.
No description provided.
None
No description provided.
No description provided.