We present a study of the inclusive production of neutral pions and charged particles from 112 000 hadronic Z 0 decays. The measured inclusive momentum distributions can be reproduced by parton shower Monte Carlo programs and also by an analytical QCD calculation. Comparing our results to e + e − data between √ s = 9 and 91 GeV, we findfind that the evolution of the spectra with center of mass energy is consistent with the QCD predictions.
No description provided.
Error is dominated by systematic uncertainties.
No description provided.
The distributions of quarks in the pion and nucleon are extracted from measurements of the reaction π−N→μ+μ−X at 253 GeV/c in a naive Drell-Yan analysis, as well as QCD-corrected analyses at leading-log and next-to-leading-log order. As xπ→1 the pion structure function shows a term that varies as 1mμμ4, which we interpret as a higher-twist effect. Additionally, the angular distribution of the μ+ in the muon-pair rest frame tends towards sin2θ as xπ→1 and as mμμ→0 in a manner consistent with higher-twist effects. When the strongly mass-dependent higher-twist effects are included as part of the pion structure function, the nucleon structure function agrees well with leading-twist results from deeply inelastic lepton-hadron scattering. A significant advance of the present work is the extension of the analysis to low masses by the subtraction of the Jψ and ψ′ resonances from the continuum. Our analysis covers the kinematic range 0.4<xπ<1.0 and 0.02<xN<0.33 with 3.0<mμμ<8.55 GeV/c2. Cross sections for ψ′ production are presented in an appendix.
No description provided.
No description provided.
No description provided.
We have measured inclusive distributions for charged particles in hadronic decays of the Z boson. The variables chosen for study were charged-particle multiplicity, scaled momentum, and momenta transverse to the sphericity axes. The distributions have been corrected for detector effects and are compared with data from e+e− annihilation at lower energies and with the predictions of several QCD-based models. The data are in reasonable agreement with expectations.
Mean corrected charged particle multiplicity.
Corrected charged particle X distributions. Errors are statistical and systematic combined.
Corrected charged particle PTIN distributions. Errors are statistical and systematic combined.
Multihadronic e+e− annihilation events at a center-of-mass energy of 29 GeV have been studied with both the original (PEP 5) Mark II and the upgraded Mark II detectors. Detector-corrected distributions from global shape analyses such as aplanarity, Q2-Q1, sphericity, thrust, minor value, oblateness, and jet masses, and inclusive charged-particle distributions including x, rapidity, p⊥, and particle flow are presented. These distributions are compared with predictions from various multihadron event models which use leading-logarithmic shower evolution or QCD matrix elements at the parton level and string or cluster fragmentation for hadronization. The new generation of parton-shower models gives, on the average, a better description of the data than the previous parton-shower models. The energy behavior of these models is compared to existing e+e− data. The predictions of the models at a center-of-mass energy of 93 GeV, roughly the expected mass of the Z0, are also presented.
Aplanarity distribution.
QX Distribution(QX=SQRT(3)*(Q3-Q2)).
The (Q2-Q1) distribution.
We present measurements of the differential cross section for the production of massive muon pairs in 225-GeV/c π−-nucleus collisions. We have used the data between the ψ and ϒ resonances in the framework of the Drell-Yan quark-antiquark annihilation model to predict the behavior of the cross section in the high-mass (mμμ>11 GeV/c2) region. The data are consistent with this extrapolation provided that a QCD leading-logarithmic evolution is included in the structure functions.
No description provided.
No description provided.
We present our final data on the production of the baryons p, Λ, Λ , Σ 0 , Σ 0 , Σ − , Σ + , Ω + , and of the baryon resonances Δ ++ (1232), Σ ∗± (1385), Σ ∗± (1385) in K + p interactions at 70 GeV/ c . Results are given on total and semi-inclusive cross sections, transverse momentum distributions and Feynman- x spectra. The data are compared with measurements at 32 GeV/ c and other energies. The predictions of the LUND fragmentation model for low- p T hadron-hadron collisions are examined and found to offer a reasonably successful description of the data.
No description provided.
No description provided.
No description provided.