The measurement of charged-particle event shape variables is presented in inclusive inelastic pp collisions at a center-of-mass energy of 7 TeV using the ATLAS detector at the LHC. The observables studied are the transverse thrust, thrust minor and transverse sphericity, each defined using the final-state charged particles' momentum components perpendicular to the beam direction. Events with at least six charged particles are selected by a minimum-bias trigger. In addition to the differential distributions, the evolution of each event shape variable as a function of the leading charged particle transverse momentum, charged particle multiplicity and summed transverse momentum is presented. Predictions from several Monte Carlo models show significant deviations from data.
Normalized distributions of Tranverse Thrust for 4 ranges of leading particle PT.
Normalized distributions of Tranverse Thrust for 5 lower limit values of leading particle PT.
Normalized distributions of Tranverse Thrust Minor for 4 ranges of leading particle PT.
A measurement of novel event shapes quantifying the isotropy of collider events is performed in 140 fb$^{-1}$ of proton-proton collisions with $\sqrt s=13$ TeV centre-of-mass energy recorded with the ATLAS detector at CERN's Large Hadron Collider. These event shapes are defined as the Wasserstein distance between collider events and isotropic reference geometries. This distance is evaluated by solving optimal transport problems, using the 'Energy-Mover's Distance'. Isotropic references with cylindrical and circular symmetries are studied, to probe the symmetries of interest at hadron colliders. The novel event-shape observables defined in this way are infrared- and collinear-safe, have improved dynamic range and have greater sensitivity to isotropic radiation patterns than other event shapes. The measured event-shape variables are corrected for detector effects, and presented in inclusive bins of jet multiplicity and the scalar sum of the two leading jets' transverse momenta. The measured distributions are provided as inputs to future Monte Carlo tuning campaigns and other studies probing fundamental properties of QCD and the production of hadronic final states up to the TeV-scale.
IRing2 for HT2>=500 GeV, NJets>=2
IRing2 for HT2>=500 GeV, NJets>=3
IRing2 for HT2>=500 GeV, NJets>=4
Distributions sensitive to the underlying event are studied in events containing one or more charged-particle jets produced in pp collisions at sqrt(s) = 7 TeV with the ATLAS detector at the Large Hadron Collider (LHC). These measurements reflect 800 inverse microbarns of data taken during 2010. Jets are reconstructed using the antikt algorithm with radius parameter R varying between 0.2 and 1.0. Distributions of the charged-particle multiplicity, the scalar sum of the transverse momentum of charged particles, and the average charged-particle pT are measured as functions of pT^JET in regions transverse to and opposite the leading jet for 4 GeV < pT^JET < 100 GeV. In addition, the R-dependence of the mean values of these observables is studied. In the transverse region, both the multiplicity and the scalar sum of the transverse momentum at fixed pT^JET vary significantly with R, while the average charged-particle transverse momentum has a minimal dependence on R. Predictions from several Monte Carlo tunes have been compared to the data; the predictions from Pythia 6, based on tunes that have been determined using LHC data, show reasonable agreement with the data, including the dependence on R. Comparisons with other generators indicate that additional tuning of soft-QCD parameters is necessary for these generators. The measurements presented here provide a testing ground for further development of the Monte Carlo models.
Mean value of N(C=CHARGED) v jet PT for R=0.2.
Mean value of N(C=CHARGED) v jet PT for R=0.4.
Mean value of N(C=CHARGED) v jet PT for R=0.6.
This paper presents a measurement of the $W$ boson production cross section and the $W^{+}/W^{-}$ cross-section ratio, both in association with jets, in proton--proton collisions at $\sqrt{s}=8$ TeV with the ATLAS experiment at the Large Hadron Collider. The measurement is performed in final states containing one electron and missing transverse momentum using data corresponding to an integrated luminosity of 20.2 fb$^{-1}$. Differential cross sections for events with one or two jets are presented for a range of observables, including jet transverse momenta and rapidities, the scalar sum of transverse momenta of the visible particles and the missing transverse momentum in the event, and the transverse momentum of the $W$ boson. For a subset of the observables, the differential cross sections of positively and negatively charged $W$ bosons are measured separately. In the cross-section ratio of $W^{+}/W^{-}$ the dominant systematic uncertainties cancel out, improving the measurement precision by up to a factor of nine. The observables and ratios selected for this paper provide valuable input for the up quark, down quark, and gluon parton distribution functions of the proton.
Cross section for the production of W bosons for different inclusive jet multiplicities.
Statistical correlation between bins in data for the cross section for the production of W bosons for different inclusive jet multiplicities.
Differential cross sections for the production of W<sup>+</sup> bosons, W<sup>-</sup> bosons and the W<sup>+</sup>/W<sup>-</sup> cross section ratio as a function of the inclusive jet multiplicity.
A measurement of observables sensitive to effects of colour reconnection in top-quark pair-production events is presented using 139 fb$^{-1}$ of 13$\,$TeV proton-proton collision data collected by the ATLAS detector at the LHC. Events are selected by requiring exactly one isolated electron and one isolated muon with opposite charge and two or three jets, where exactly two jets are required to be $b$-tagged. For the selected events, measurements are presented for the charged-particle multiplicity, the scalar sum of the transverse momenta of the charged particles, and the same scalar sum in bins of charged-particle multiplicity. These observables are unfolded to the stable-particle level, thereby correcting for migration effects due to finite detector resolution, acceptance and efficiency effects. The particle-level measurements are compared with different colour reconnection models in Monte Carlo generators. These measurements disfavour some of the colour reconnection models and provide inputs to future optimisation of the parameters in Monte Carlo generators.
Naming convention for the observables at different levels of the analysis. At the background-subtracted level the contributions of tracks from pile-up collisions and tracks from secondary vertices are subtracted. At the corrected level the tracking-efficiency correction (TEC) is applied. The observables at particle level are the analysis results.
The $\chi^2$ and NDF for measured normalised differential cross-sections obtained by comparing the different predictions with the unfolded data. Global($n_\text{ch},\Sigma_{n_{\text{ch}}} p_{\text{T}}$) denotes the scenario in which the covariance matrix is built including the correlations of systematic uncertainties between the two observables $n_{\text{ch}}$ and $\Sigma_{n_{\text{ch}}} p_{\text{T}}$
Normalised differential cross-section as a function of $n_\text{ch}$.
A search for doubly-charged Higgs bosons decaying to pairs of electrons and/or muons is presented. The search is performed using a data sample corresponding to an integrated luminosity of 4.7 fb-1 of pp collisions at sqrt(s) = 7 TeV collected by the ATLAS detector at the LHC. Pairs of prompt, isolated, high-pT leptons with the same electric charge (ee, emu, mumu) are selected, and their invariant mass distribution is searched for a narrow resonance. No significant excess over Standard Model background expectations is observed, and limits are placed on the cross section times branching ratio for pair production of doubly-charged Higgs bosons. The masses of doubly-charged Higgs bosons are constrained depending on the branching ratio into these leptonic final states. Assuming pair production, coupling to left-handed fermions, and a branching ratio of 100% for each final state, masses below 409 GeV, 375 GeV, and 398 GeV are excluded for ee, emu, mumu, respectively.
The upper mass limit of the doubly charged Higgs boson as a function of its branching ratio to like sign lepton pairs assuming coupling to left-handed fermions. The results are given separately for each of the lepton pair combinations, electron-electron, electon-muon and muon-muon.
The upper mass limit of the doubly charged Higgs boson as a function of its branching ratio to like sign lepton pairs assuming coupling to right-handed fermions. The results are given separately for each of the lepton pair combinations, electron-electron, electon-muon and muon-muon.
A search has been performed for the experimental signature of an isolated photon with high transverse momentum, at least one jet identified as originating from a bottom quark, and high missing transverse momentum. Such a final state may originate from supersymmetric models with gauge-mediated supersymmetry breaking in events in which one of a pair of higgsino-like neutralinos decays into a photon and a gravitino while the other decays into a Higgs boson and a gravitino. The search is performed using the full dataset of 7 TeV proton-proton collisions recorded with the ATLAS detector at the LHC in 2011, corresponding to an integrated luminosity of 4.7 fb-1. A total of 7 candidate events are observed while 7.5 pm 2.2 events are expected from the Standard Model background. The results of the search are interpreted in the context of general gauge mediation to exclude certain regions of a benchmark plane for higgsino-like neutralino production.
Missing ET distribution.
Signal Point Information: (1) Number of Monte Carlo events generated (2) Total signal cross section (pb) (3) Signal acceptance (4) Relative uncertainty on acceptance (5) CLs expected (6) CLs observed.
The observed limit contour in the GLUINO-NEUTRALINO plane.
Results of a search for new phenomena in events with an energetic photon and large missing transverse momentum in proton-proton collisions at sqrt(s)=7 TeV are reported. Data collected by the ATLAS experiment at the LHC corresponding to an integrated luminosity of 4.6 fb-1 are used. Good agreement is observed between the data and the Standard Model predictions. The results are translated into exclusion limits on models with large extra spatial dimensions and on pair production of weakly interacting dark matter candidates.
95% CL observed and expected upper limits on M_D as a function of the number of extra-dimensions considering LO signal cross sections. The impact of the +-1sigma theoretical uncertainty on the observed limits and the expected +-1sigma range of limits in the absence of a signal are also given.
95% CL observed and expected upper limits on M_D as a function of the number of extra-dimensions considering NLO signal cross sections. The impact of the +-1sigma theoretical uncertainty on the observed limits and the expected +-1sigma range of limits in the absence of a signal are also given.
95% CL observed and expected upper limits on M_* for spin-independent (D1) WIMP models. The impact of the +-1sigma theoretical uncertainty on the observed limits and the expected +-1sigma range of limits in the absence of a signal are also given.
This paper presents a measurement of the W^+W^- production cross section in pp collisions at sqrt{s}=7 TeV. The leptonic decay channels are analyzed using data corresponding to an integrated 4.6 fb-1 collected with the ATLAS detector at the Large Hadron Collider. The W^+W^- production cross section sigma(pp -> W^+W^-+X) is measured to be 51.9 +- 2.0 (stat) +- 3.9 (syst) +- 2.0 (lumi) pb, compatible with the Standard Model prediction of 44.7 +2.1 -1.9 pb. A measurement of the normalized fiducial cross section as a function of the leading lepton transverse momentum is also presented. The reconstructed transverse momentum distribution of the leading lepton is used to extract limits on anomalous WWZ and WWgamma couplings.
The measured fiducial cross section in the three channels . The first systematic (sys) error is the combined systematic uncertainty excluding that of the luminosity. The second (sys) error is the uncertainty on the luminosity.
The measured total cross section in the three channels. The first systematic (sys) error is the combined systematic uncertainty excluding that of the luminosity. The second (sys) error is the uncertainty on the luminosity.
The measured total cross section (combined). The first systematic (sys) error is the combined systematic uncertainty excluding that of the luminosity. The second (sys) error is the uncertainty on the luminosity.
Two-particle correlations in relative azimuthal angle ($\Delta-\phi$) and pseudorapidity ($\Delta-\eta$) are measured in $\sqrt{s_{NN}}$ = 5.02 TeV p+Pb collisions using the ATLAS detector at the LHC. The measurements are performed using approximately 1 $\mu b^{-1}$ of data as a function of $p_T$ and the transverse energy ($\sum E_T^{Pb}$) summed over 3.1 < $\eta$ < 4.9 in the direction of the Pb beam. The correlation function, constructed from charged particles, exhibits a long-range (2<|$\Delta-\eta$|<5) near-side ($\Delta-\phi$ ~ 0) correlation that grows rapidly with increasing $\sum E_T^{Pb}$. A long-range away-side ($\Delta-\phi$ ~ pi) correlation, obtained by subtracting the expected contributions from recoiling dijets and other sources estimated using events with small $\sum E_T^{Pb}$, is found to match the near-side correlation in magnitude, shape (in $\Delta-\eta$ and $\Delta-\phi$) and $\sum E_T^{Pb}$ dependence. The resultant $\Delta-\phi$ correlation is approximately symmetric about $\pi$/2, and is consistent with a cos(2$\Delta-\phi$) modulation for all $\sum E_T^{Pb}$ ranges and particle $p_T$. The amplitude of this modulation is comparable in magnitude and $p_T$ dependence to similar modulations observed in heavy-ion collisions, suggestive of final-state collective effects in high multiplicity events.
Distribution of per-trigger yield, Y(DELTA(PHI)), in the peripheral and the central event activity classes and their differences, for 0.3 < pT(a) < 0.5 GeV and 0.5 < pT(b) < 4 GeV.
Distribution of per-trigger yield, Y(DELTA(PHI)), in the peripheral and the central event activity classes and their differences, for 0.5 < pT(a) < 1 GeV and 0.5 < pT(b) < 4 GeV.
Distribution of per-trigger yield, Y(DELTA(PHI)), in the peripheral and the central event activity classes and their differences, for 1 < pT(a) < 2 GeV and 0.5 < pT(b) < 4 GeV.