We have measured inclusive distributions for charged particles in hadronic decays of the Z boson. The variables chosen for study were charged-particle multiplicity, scaled momentum, and momenta transverse to the sphericity axes. The distributions have been corrected for detector effects and are compared with data from e+e− annihilation at lower energies and with the predictions of several QCD-based models. The data are in reasonable agreement with expectations.
Mean corrected charged particle multiplicity.
Corrected charged particle X distributions. Errors are statistical and systematic combined.
Corrected charged particle PTIN distributions. Errors are statistical and systematic combined.
We have measured the mass of the Z boson to be 91.14±0.12 GeV/c2, and its width to be 2.42−0.35+0.45 GeV. If we constrain the visible width to its standard-model value, we find the partial width to invisible decay modes to be 0.46±0.10 GeV, corresponding to 2.8±0.6 neutrino species, with a 95%-confidence-level upper limit of 3.9.
No description provided.
We have observed hadronic final states produced in the decays of Z bosons. In order to study the parton structure of these events, we compare the distributions in sphericity, thurst, aplanarity, and number of jets to the predictions of several QCD-based models and to data from lower energies. The data and models agree within the present statistical precision.
Corrected event shape distributions.
Corrected event shape distributions.
Corrected event shape distributions.
The SciBooNE Collaboration has performed a search for charged current coherent pion production from muon neutrinos scattering on carbon, $\nu_{\mu}$ $^{12}C \to \mu^{-12}C \pi^+$, with two distinct data samples. No evidence for coherent pion production is observed. We set 90% confidence level upper limits on the cross section ratio of charged current coherent pion production to the total charged current cross section at $ 0.67 \times 10^{-2}$ at mean neutrino energy 1.1 GeV and 1.36\times 10^{-2} at mean neutrino energy 2.2 GeV.
Upper limits for coherent pion production.
The double-differential production cross-section of positive pions, $d^2\sigma^{\pi^{+}}/dpd\Omega$, measured in the HARP experiment is presented. The incident particles are 8.9 GeV/c protons directed onto a beryllium target with a nominal thickness of 5% of a nuclear interaction length. The measured cross-section has a direct impact on the prediction of neutrino fluxes for the MiniBooNE and SciBooNE experiments at Fermilab. After cuts, 13 million protons on target produced about 96,000 reconstructed secondary tracks which were used in this analysis. Cross-section results are presented in the kinematic range 0.75 GeV/c < $p_{\pi}$ < 6.5 GeV/c and 30 mrad < $\theta_{\pi}$ < 210 mrad in the laboratory frame.
Double differential cross section for PI+ production in the angular range 30 to 60 MRAD. Errors are point-to-point only.
Double differential cross section for PI+ production in the angular range 60 to 90 MRAD. Errors are point-to-point only.
Double differential cross section for PI+ production in the angular range 90 to 120 MRAD. Errors are point-to-point only.
A precision measurement of the double-differential production cross-section, ${{d^2 \sigma^{\pi^+}}}/{{d p d\Omega}}$, for pions of positive charge, performed in the HARP experiment is presented. The incident particles are protons of 12.9 GeV/c momentum impinging on an aluminium target of 5% nuclear interaction length. The measurement of this cross-section has a direct application to the calculation of the neutrino flux of the K2K experiment. After cuts, 210000 secondary tracks reconstructed in the forward spectrometer were used in this analysis. The results are given for secondaries within a momentum range from 0.75 GeV/c to 6.5 GeV/c, and within an angular range from 30 mrad to 210 mrad. The absolute normalization was performed using prescaled beam triggers counting protons on target. The overall scale of the cross-section is known to better than 6%, while the average point-to-point error is 8.2%.
Double differential PI+ production cross section in the angular range 30 to 60 mrad.. Errors shown are point-to-point only.
Double differential PI+ production cross section in the angular range 60 to 90 mrad.. Errors shown are point-to-point only.
Double differential PI+ production cross section in the angular range 90 to 120 mrad.. Errors shown are point-to-point only.
Measurements of the double-differential charged pion production cross-section in the range of momentum 100 MeV/c < p < 800 MeV/c and angle 0.35 < \theta < 2.15 rad in proton-beryllium, proton-carbon, proton-aluminium, proton-copper, proton-tin, proton-tantalum and proton-lead collisions are presented. The data were taken with the large acceptance HARP detector in the T9 beam line of the CERN PS. The pions were produced by proton beams in a momentum range from 3 GeV/c to 12.9 GeV/c hitting a target with a thickness of 5% of a nuclear interaction length.
Double-differential cross section for inclusive PI+ production in the LAB system with the BE target for a PI+ polar angle from 0.35 to 0.55 radians.
Double-differential cross section for inclusive PI+ production in the LAB system with the BE target for a PI+ polar angle from 0.55 to 0.75 radians.
Double-differential cross section for inclusive PI+ production in the LAB system with the BE target for a PI+ polar angle from 0.75 to 0.95 radians.
We have searched for the annihilation of e+e− into the exclusive channels e±τ∓ and μ±τ∓ at √s =29 GeV, using 226 and 133 pb−1, respectively, of data taken with the Mark II detector at the SLAC storage ring PEP. The resulting candidate sample is compatible with the expected background from τ pair production. Our analysis yields 95%-C.L. cross-section limits of σeτ/σμμ<1.8×10−3 and σμτ/σμμ<6.1×10−3, where σμμ is the QED cross section for production of a lepton pair. This is the first high-Q2 test of lepton-flavor conservation involving τ leptons.
95 pct confidence upper limits.
We measured the differential jet-multiplicity distribution in e+e− annihilation with the Mark II detector. This distribution is compared with the second-order QCD prediction and αs is determined to be 0.123±0.009±0.005 at √s≊MZ (at the SLAC Linear Collider) and 0.149±0.002±0.007 at √s=29 GeV (at the SLAC storage ring PEP). The running of αs between these two center-of-mass energies is consistent with the QCD prediction.
DIFFERENTIAL JET MULTIPLICITIES.
DIFFERENTIAL JET MULTIPLICITIES.
A measurement of the proton spin structure function g1p(x,Q^2) in deep-inelastic scattering is presented. The data were taken with the 27.6 GeV longitudinally polarised positron beam at HERA incident on a longitudinally polarised pure hydrogen gas target internal to the storage ring. The kinematic range is 0.021
The second systematic errors listed for G1/F1 (G1) are the uncertainties concerning R (R and F2).
G1 evolved at Q2 = 2.5 GeV**2, assuming G1/F1 to be independent of Q2. The second systematic errors listed for are the uncertainties concerning R and F2.