We have observed hadronic final states produced in the decays of Z bosons. In order to study the parton structure of these events, we compare the distributions in sphericity, thurst, aplanarity, and number of jets to the predictions of several QCD-based models and to data from lower energies. The data and models agree within the present statistical precision.
Corrected event shape distributions.
Corrected event shape distributions.
Corrected event shape distributions.
Production rates of multijet hadronic final states are studied ine+e− annihilation at 29 GeV center of mass energy. QCD shower model calculations with exact first order matrix element weighting at the first gluon vertex are capable of reproducing the observed multijet event rates over a large range of jet pair masses. The method used to reconstruct jets is well suited for directly comparing experimental jet rates with parton rates calculated in perturbative QCD. Evidence for the energy dependene of αs is obtained by comparing the observed production rates of 3-jet events with results of similar studies performed at higher center of mass energies.
Observed production rates relative to the total hadronic cross section.
Production rates corrected for fragmentation, initial state radiation and detector effects.
Inclusive charged particle production ine+e− annihilation into hadrons is studied in terms of the particle fractional momentumxp. Thexp distribution for gluon jets is extracted by comparing two data samples measured in the TASSO detector: nearly symmetric three jet events at centre-of-mass energyW∼35 GeV and two jet events atW∼22 GeV, yielding quark and gluon jets of similar energies (∼11.5 GeV). No significant difference is observed between quark and gluon jets. Monte Carlo models based on parton showers describe the trend and energy variation of the data better than a model with second order matrix element in αs.
2 JET data at sqrt(s) = 35 GeV.
3 JET data at sqrt(s) = 22 GeV.
Gluon jet data at sqrt(s) = 11.5 GeV.
Data accumulated by the TASSO detector across the whole range of energies spanned at PETRA, 12⩽ s ⩽46.8 GeV , have been analysed in terms of cluster algorithms. Using parameters optimised at 35 GeV CM energy, three perturbative QCD+fragmentation models were compared with the data. The O( α s 2 ) model gives too few 4,5- cluster events, implying that higher order QCD contributions are required to describe the data. The parton cascade model, incorporating many orders in perturbation theory, gives a better description of the rates of ⩾ 4 clusters, but shows a lack of hard gluon emission by giving too few 3-, and too many 2-cluster events. When hard gluon emission is taken into account, by the cascade model incorporating the O( α s ) matrix element, all cluster rates are reproduced well. All the models describe the trend of the evolution of the cluster rates between 〈 s 〉 = 14 and 43.8 GeV. We find that the rate of 3-jet events seen in the data decreases as s increases in a manner consistent with the Q 2 dependence of α s as predicted by QCD.
No description provided.
No description provided.
Corrected 3 jet rate with YCUT=0.08.
We report a measurement of the inclusive charged-particle distribution for gluon jets derived from nearly threefold-symmetric three-jet events taken at center-of-mass energy of 29 GeV in e+e− annihilation. The charged-particle spectrum for these jets is observed to fall off more rapidly than those of quark jets of the same energy.
Errors include both statistics and the uncertainty in correction factors. X is defined at the energy of the individual particle divided by the total energy of the jet to which it is assigned.
Differential three-jet cross sections have been measured in e + e − -annihilation at an average CM energy of 33.8 GeV and were compared to first- and second-order predictions of QCD and of a QED-like abelian vector theory. QCD provides a good description of the observed distributions. The inclusion of second-order effects reduced the observed quark-gluon coupling strength by about 20% to α S = 0.16 ± 0.015 (stat.) ± 0.03 (syst.). The abelian vector theory is found to be incompatible with the data.
FIRST ORDER QCD.
SECOND ORDER QCD.
Hadronic events obtained with the CELLO detector at PETRA were compared with first-order QCD predictions using two different models for the fragmentation of quarks and gluons, the Hoyer model and the Lund model. Both models are in reasonable agreement with the data, although they do not completely reproduce the details of many distributions. Several methods have been applied to determine the strong coupling constant α S . Although within one model the value of α S varies by 20% among the different methods, the values determined using the Lund model are 30% or more larger (depending on the method used) than the values determined with the Hoyer model. Our results using the Hoyer model are in agreement with previous results based on this approach.
DATA CORRECTED WITH HOYER MODEL (ALPHA-S=0.15).
DATA CORRECTED WITH LUND MODEL (ALPHA-S=0.25).
No description provided.
The topology of hadronic e + e − annihilation events has been analysed using the sphericity tensor and a cluster method. Comparison with quark models including gluon bremsstrahlung yields good agreement with the data. The strong-coupling constant is determined in 1st order QCD to be α S =0.19±0.04 (stat) ± 0.04 (syst.) at 22 GeV and α S =0.16 ±0.02± 0.03 at 34 GeV. The differential cross section with respect to the energy fraction carried by the most energetic parton agrees with the prediction of QCD, but cannot be reproduced by a scalar gluon model. These results are stable against variations of the transverse momentum distribution of the fragmentation function within the quoted errors.
No description provided.
A multi-jet analysis of hadronic final states from e + e − annihilation in the energy range 27 < E cm < 32GeV is presented. The analysis uses a cluster method to identify the jets in a hadronic event. The distribution of the number of jets per event is compared with several models. From the number of identified coplanar three-jet events the strong coupling constant is determined to beα S = 0.15 ± 0.03 (stat. error) ± 0.02 (syst. error). The inferred energy distribution of the most energetic parton is in good agreement with the first-order QCD prediction. A scalar-gluon model is strongly disfavoured. Higher-twist contributions to the three-jet sample are found to be small.
No description provided.
We have analyzed 1113 events of the reaction e + e − → hadrons at CM energies of 12 and 30 GeV in order to make a detailed comparison with QCD. Perturbative effects can be well separated from effects depending on the quark and gluon fragmentation parameters to yield a reliable measurement of the coupling constant α S . At 30 GeV, the result is α S = 0.17 ± 0.02 (statistical) ± 0.03 (systematic). QCD model predictions, using the fragmentation parameters determined along with α S , agree with both gross properties of the final states and with detailed features of the three-jet states.
No description provided.
No description provided.
No description provided.