Precise determination of the CKM matrix element $\left| V_{cb}\right|$ with $\bar B^0 \to D^{*\,+} \, \ell^- \, \bar \nu_\ell$ decays with hadronic tagging at Belle

The Belle collaboration Abdesselam, A. ; Adachi, I. ; Adamczyk, K. ; et al.
BELLE-CONF-1612, 2017.
Inspire Record 1512299 DOI 10.17182/hepdata.76987

The precise determination of the CKM matrix element $\left| V_{cb}\right|$ is important for carrying out tests of the flavour sector of the Standard Model. In this article we present a preliminary analysis of the $\bar B^0 \to D^{*\,+} \, \ell^- \, \bar \nu_\ell$ decay mode and its charge conjugate, selected in events that contain a fully reconstructed $B$-meson, using 772 million $e^+ \, e^- \to \Upsilon(4S) \to B \bar B$ events recorded by the Belle detector at KEKB. Unfolded differential decay rates of four kinematic variables fully describing the $\bar B^0 \to D^{*\,+} \, \ell^- \, \bar \nu_\ell$ decay in the $B$-meson rest frame are presented. We measure the total branching fraction $\mathcal{B}( \bar B^0 \to D^{*\,+} \, \ell^- \, \bar \nu_\ell ) = \left(4.95 \pm 0.11 \pm 0.22 \right) \times 10^{-2}$, where the errors are statistical and systematic respectively. The value of $\left|V_{cb} \right|$ is determined to be $\left( 37.4 \pm 1.3 \right) \times 10^{-3}$. Both results are in good agreement with current world averages.

5 data tables

The unfolded differential rate as a function of $w$.

The unfolded differential rate as a function of $\cos\theta_\nu$.

The unfolded differential rate as a function of $\cos\theta_\ell$.

More…