We have measured large-angle electron-positron pairs from the reaction γ +Be → Be+e + +e − in the e + e − invariant-mass region of 610 < m < 850 MeV/ c 2 . The phase of the photoproduction amplitude of the ϱ-meson at 4.1 – 6.1 GeV was found to deviate from pure imaginary by 11.8° ± 4.4° which corresponds to a ratio of the real to imaginary ϱ-nucleon amplitude of β = −0.2 ± 0.1.
No description provided.
Previous measurements of the cross section asymmetry for single π + production on protons with linearly polarized photons of 3.4 GeV have been extended to momentum transfers within the forward peak, i.e. − = 0.0026, 0.006 and 0.01 (GeV/ c ) 2 . The results are in good agreement with pion exchange models.
Axis error includes +- 6/6 contribution.
Photoproduction is studied at 2.8 and 4.7 GeV using a linearly polarized monoenergetic photon beam in a hydrogen bubble chamber. We discuss the experimental procedure, the determination of channel cross sections, and the analysis of the channel γp→pπ+π−. A model-independent analysis of the ρ0-decay angular distribution allows us to measure nine independent density-matrix elements. From these we find that the reaction γp→pρ0 proceeds almost completely through natural parity exchange for squared momentum transfers |t|<1 GeV2 and that the ρ production mechanism is consistent with s-channel c.m. helicity conservation for |t|<0.4 GeV2. A cross section for the production of π+π− pairs in the s-channel c.m. helicity-conserving p-wave state is determined. The ρ mass shape is studied as a function of momentum transfer and is found to be inconsistent with a t-independent Ross-Stodolsky factor. Using a t-dependent parametrization of the ρ0 mass shape we derive a phenomenological ρ0 cross section. We compare our phenomenological ρ0 cross section with other experiments and find good agreement for 0.05<|t|<1 GeV2. We discuss the discrepancies in the various determinations of the forward differential cross section. We study models for ρ0 photoproduction and find that the Söding model best describes the data. Using the Söding model we determine a ρ0 cross section. We determine cross sections and nine density-matrix elements for γp→Δ++π−. The parity asymmetry for Δ++ production is incompatible with simple one-pion exchange. We compare Δ++ production with models.
FROM QUOTED TOPOLOGICAL CROSS SECTIONS. 1.44 GEV CROSS SECTION PUBLISHED PREVIOUSLY.
No description provided.
NO TMIN CORRECTION HAS BEEN MADE.
We present results of an analysis of two-prong events for elastic scattering and single-pion production in K−p interactions at 5.5 GeVc. The resonance parameters for the charged and neutral K*(890) and K*(1420) are determined and the observed production and decay properties of the charged and neutral K*(890) are compared with the theoretical predictions of an absorptive one-particle-exchange model and a Regge model. The K*(1420) differential cross section and density-matrix elements are presented and the question of whether more than one resonance exists in this mass range is considered. A search for resonance effects at Kπ mass beyond 1500 MeV is made. In particular, the recently reported state at 1800 MeV is discussed. A B5-model analysis of the reaction K−p→K¯0π−p is also presented.
NORMALIZED TO SIG(K- P --> ANYTHING) OF 24.3 +- 0.8 MB.
FORWARD CROSS SECTION OPTICAL POINT FROM TWO PARAMETER EXPONENTIAL FIT OVER 0.12 < -T < 0.68 GEV**2.
No description provided.
We present preliminary results from a sample of ∼ 1200 events obtained from an exposure of the 30-in. Argonne National Laboratory—National Accelerator Laboratory liquid-hydrogen bubble chamber to 102-GeVc protons. The elastic and total inelastic cross sections are respectively 6.9 ± 1.0 and 32.8 ± 1.1 mb. The parameters of the multiplicity distribution for negative tracks are 〈n−〉=2.17±0.07, D−2=〈n−2〉−〈n−〉2=2.56±0.12, and f2−=D−2−〈n−〉=0.39±0.10.
No description provided.
Results are presented on a series of measurements of ρ-photoproduction from hydrogen, deuterium, and complex nuclei ranging up to lead, at photon energies ranging from 4 to 9 GeV. Detailed dipion mass-spectrum fits are presented, using a Drell-type nonresonant background and its interference with the resonant amplitude, with no other arbitrary backgrounds. For hydrogen and deuterium, the inelastic contributions have been subtracted. The A dependence of the cross sections is analyzed to yield values of γρ24π and σρN at average photon energies of 6.1, 6.5, and 8.8 GeV. The hydrogen-to-deuterium ratios indicate the presence of possible nondiffractive amplitudes at low energies which then decrease with energy.
No description provided.
No description provided.
No description provided.
None
No description provided.
No description provided.
No description provided.
Final states ηΛ and η ′ Λ were studied in K − p interactions at 3.95 GeV c . Cross sections, angular distributions and Λ polarizations are reported. The coupling ration R T = (η 1 K K ∗∗ (1420) (η 8 K K ∗∗ (1420)) M is found to be independent of the momentum transfer. Backward Λη is compared to K − p → Λπ o , π ± p → pπ ± and π − p → nπ o at the same momentum.
No description provided.
No description provided.
No description provided.
We report on a measurement for the branching-ratio X 0 → 2γ X 0 ar all. Our result is X 0 → 2γ X 0 → all = (2.9 ± 0.9)% .
BY COMPARISON WITH THE KNOWN ETA PRODUCTION CROSS SECTION.
As a partial result of an analysis of K + d interactions at 3 GeV/ c produced in the 81 cm Saclay bubble chamber, we present data on K + differential cross sections for the following reactions: K + d → K + d, K + d → K + pn, K + d → K 0 pp . A set of parameters describing the K + n elastic scattering has been obtained from a simulataneous fit, based on the Glauber model. to the three experimental differential cross sections and to the K + d total cross section, giving α n = 1.7 ± 0.5 GeV −2 for the slope α n of the differential cross section, and ρ n = −0.16 ± 0.3 for the ratio of the real to the imaginary part of the forward scattering amplitude. The D-wave function of the deuteron has been found to give a non-negligible contribution to the coherent reaction.
No description provided.
No description provided.
No description provided.