We report a measurement of the e+e−→e+e−pp¯π+π− process with the TPC/Two-Gamma facility at the PEP e+e− storage ring at SLAC. Forty-five pp¯π+π− events were identified in data corresponding to an integrated e+e− luminosity of 142 pb−1. The cross section for γγ→pp¯π+π− is given both as a function of the γγ center-of-mass energy Wγγ, with Wγγ between 2.5 and 5.5 GeV, and as a function of the in variant mass squared q2 of one of the photons, with −q2<7 GeV2. This cross section falls much less rapidly with Wγγ than does the cross section for a similar process, γγ→pp¯. No Δ0Δ¯0 production is observed, and only a small fraction of the events at low Wγγ is consistent with γγ→Δ++Δ¯−−, Δ++p¯π−, or Δ¯−−pπ+. In an expanded search through the same data, four events compatible with either ΛΛ¯(Λ→pπ−) or Σ0Λ¯(Σ0→Λγ) production were found.
Statistical errors only.
Data read from graph.
None
NUCLEUS IS NUCLEAR PHOTOEMULSION. EVENT WITH A TOTAL CHARGE OF ALL SPECTATOR FRAGMENTS OF A PROJECTILE = 0.
NUCLEUS IS NUCLEAR PHOTOEMULSION. EVENT WITH A TOTAL CHARGET OF ALL SPECTATOR FRAGMENTS OF A PROJECTILE = 1.
NUCLEUS IS NUCLEAR PHOTOEMULSION.
The ratio of the real to the imaginary part of the pp forward elastic-scattering amplitude ϱ has been measured at 550, 757, and 1077 MeV/ c at LEAR, using the Coulomb-nuclear interference method. The results obtained for ρ and b , the nuclear slope, are ϱ = 0.084 ± 0.051 and b = 20.9 ± 2.1 (GeV/ c ) −2 at 550 MeV/ c , ϱ = 0.102 ± 0.043 and b = 18.0 ± 0.5 (GeV/ c ) −2 = at 757 MeV/ c , and ϱ = 0.059 ± 0.035 and b = 15.2 ± 0.3 (GeV/ c ) −2 at 1077 MeV/ c .
Error on SLOPE is statistical only.
Measured differential cross sections corrected for small-angle trigger efficiency and absorption losses. Statistical errors only.
Measured differential cross sections corrected for small-angle trigger efficiency and absorption losses. Statistical errors only.
We have measured dijet angular distributions at √s =1.8 TeV with the Collider Detector at Fermilab and the Tevatron p¯p Collider and find agreement with leading-order QCD. By comparing the distribution for the highest dijet invariant masses with the prediction of a model of quark compositeness, we set a lower limit on the associated scale parameter Λc at 330 GeV (95% C.L.).
Numerical values read from figure in preprint.
Production rates of multijet hadronic final states are studied ine+e− annihilation at 29 GeV center of mass energy. QCD shower model calculations with exact first order matrix element weighting at the first gluon vertex are capable of reproducing the observed multijet event rates over a large range of jet pair masses. The method used to reconstruct jets is well suited for directly comparing experimental jet rates with parton rates calculated in perturbative QCD. Evidence for the energy dependene of αs is obtained by comparing the observed production rates of 3-jet events with results of similar studies performed at higher center of mass energies.
Observed production rates relative to the total hadronic cross section.
Production rates corrected for fragmentation, initial state radiation and detector effects.
Inclusive charged particle production ine+e− annihilation into hadrons is studied in terms of the particle fractional momentumxp. Thexp distribution for gluon jets is extracted by comparing two data samples measured in the TASSO detector: nearly symmetric three jet events at centre-of-mass energyW∼35 GeV and two jet events atW∼22 GeV, yielding quark and gluon jets of similar energies (∼11.5 GeV). No significant difference is observed between quark and gluon jets. Monte Carlo models based on parton showers describe the trend and energy variation of the data better than a model with second order matrix element in αs.
2 JET data at sqrt(s) = 35 GeV.
3 JET data at sqrt(s) = 22 GeV.
Gluon jet data at sqrt(s) = 11.5 GeV.
We report on total cross section and forward backward charge asymmetry measurements of the reactione+e− → τ+τ− at centre of mass energies of 35.0 GeV and 42.4 GeV using the TASSO detector. Including previous data an analysis in terms of electroweak parameters of the standard model is presented, and lower limits on mass scale parameters of residual contact interactions are given. A combined analysis of electroweak couplings using all our results on leptonic reactionse+e−→l+l− has been performed.
No description provided.
No description provided.
No description provided.
We report on an analysis of the multiplicity distributions of charged particles produced ine+e− annihilation into hadrons at c.m. energies between 14 and 46.8 GeV. The charged multiplicity distributions of the whole event and single hemisphere deviate significantly from the Poisson distribution but follow approximate KNO scaling. We have also studied the multiplicity distributions in various rapidity intervals and found that they can be well described by the negative binomial distribution only for small central intervals. We have also analysed forward-backward multiplicity correlations for different energies and selections of particle charge and shown that they can be understood in terms of the fragmentation properties of the different quark flavours and by the production and decay of resonances. These correlations are well reproduced by the Lund string model.
RATIO of MULT/DISPERSION for the whole event to that for the single hemisphere data.
Complete event multiplicities.
Single hemisphere multiplicities.
High p ⊥ inclusive muon events produced in e + e − annihilations at √ s =29 GeV have been analyzed to obtain a measurement of the b b forward-backward charge asymmetry. The result A b =0.034±0.070±0.035 differs from the theoretical expectation (−0.16) unless substantial B 0 B 0 mixing is assumed.
No description provided.
Cross sections for charge changing and particle production are measured for 32 S collisions with Al, Fe, Cu, Ag and Pb targets at 200 GeV/ c . The measured difference between the two cross sections is discussed. Results are compared with data obtained with an 16 O beam.
Charge changing cross section.
Production cross section.