Measurement of Angular Asymmetries in the Decays B->K*l+l-

The BaBar collaboration Lees, J.P. ; Poireau, V. ; Tisserand, V. ; et al.
Phys.Rev.D 93 (2016) 052015, 2016.
Inspire Record 1391152 DOI 10.17182/hepdata.75484

We study the lepton forward-backward asymmetry AFB and the longitudinal K* polarization FL, as well as an observable P2 derived from them, in the rare decays B->K*l+l-, where l+l- is either e+e- or mu+mu-, using the full sample of 471 million BBbar events collected at the Upsilon(4S) resonance with the Babar detector at the PEP-II e+e- collider. We separately fit and report results for the B+->K*+l+l- and B0->K*0l+l- final states, as well as their combination B->K*l+l-, in five disjoint dilepton mass-squared bins. An angular analysis of B+->K*+l+l- decays is presented here for the first time.

3 data tables

$F_L$ angular fit results.

$A_{FB}$ angular fit results.

$P_2$ results with total uncertainties.


Measurements at low-energies of the polarization transfer coefficient K(y, y-prime) for the reaction H-3(polarized p, polarized n)He-3 at 0 degrees

Wilburn, W.S. ; Gould, C.R. ; Hale, G.M. ; et al.
Few Body Syst. 24 (1998) 27-38, 1998.
Inspire Record 450457 DOI 10.17182/hepdata.38235

Measurements of the transverse polarization coefficient Kyy' for the reaction 3H(p,n)3He are reported for outgoing neutron energies of 1.94, 5.21, and 5.81 MeV. This reaction is important both as a source of polarized neutrons for nuclear physics experiments, and as a test of theoretical descriptions of the nuclear four-body system. Comparison is made to previous measurements, confirming the 3H(p,n)3He reaction can be used as a polarized neutron source with the polarization known to an accuracy of approximately 5%. Comparison to R-matrix theory suggests that the sign of the 3F3 phase-shift parameter is incorrect. Changing the sign of this parameter dramatically improves the agreement between theory and experiment.

1 data table

Polarized beam. The uncertainty in EKIN(C=P) reflects the energy width of the proton beam due to losses.


Measurements of polarized-neutron-polarized-proton scattering: Implications for the triton binding energy

Wilburn, W.S. ; Gould, C.R. ; Haase, D.G. ; et al.
Phys.Rev.Lett. 71 (1993) 1982-1985, 1993.
Inspire Record 370854 DOI 10.17182/hepdata.19731

Measurements have been made of ΔσT for polarized neutrons incident on a polarized-proton target from 3.65 to 11.60 MeV. In the energy range near 10 MeV, ΔσT is very sensitive to the nucleon-nucleon tensor interaction. Comparison of the data to potential-model predictions indicate that the tensor interaction is weak, resulting in values of the 3S1−3D1 mixing parameter ε1 which are smaller than predicted by any nucleon-nucleon potential model. A smaller tensor force will bring the predictions of local potential models for the triton binding energy into closer agreement with the experimental value.

1 data table

The measured cross section is the total cross section with the spins antiparallel minus the total cross section with the spins parallel.