The total cross sections of 4 He, 6 Li, 7 Li, 9 Be, 12 C and 32 S for positive and negative pions have been measured in the energy range 80 to 260 MeV in a transmission experiment. Coulomb corrections were applied using real parts of the forward nuclear amplitudes as determined from dispersion relations. At the lower energies there remain large residual differences between the π + and π − scattering on the isoscalar nuclei. These can be largely understood in terms of the Coulomb distortion.
No description provided.
No description provided.
No description provided.
The elastic scattering of positive pions by deuterium has been studied using a scintillating target to detect the recoil deuteron. In addition to the angular distribution measured for 256 MeV incident energy, the energy variation of the fixed angle cross section ( θ lab =160°) has been determined between 141 MeV and 256 MeV. The former is in qualitative agreement with a simple multiple-scattering calculation, but the energy dependence is poorly reproduced.
'SMALL-ANGLE TECHNIQUE' - CALIBRATED AT THETA(RF=LAB) OF 30 DEG.
'SMALL-ANGLE TECHNIQUE' - CALIBRATED AT THETA(RF=LAB) OF 30 DEG.
'LARGE-ANGLE TECHNIQUE' - CALIBRATED AT EACH ANGLE.
We present evidence for the production of Ξ· − , Ξ − in e + e − annihilation into hadrons. Our measurements yields: 0.026 ± 0.008 (stat.) ± 0.009 (syst.) Ξ − , Ξ − per hadronic event at W ∼ 34 GeV. Using our previous measurements of Λ, Λ and p, p production we obtain the relative yields (Ξ − , Ξ − /(Λ, Λ = 0.087 ± 0.03 ( stat. ) ± 0.03 ( syst. ) and (Ξ − , Ξ − /( p , p = 0.033 ± 0.011 ( stat. ) ± 0.011 ( syst. ) .
TOTAL YIELD PER HADRONIC EVENT AND COMPARISON WITH PREVIOUS TASSO MEASUREMENTS OF OTHER BARYONS PRODUCTION. EXTRAPOLATION HAS BEEN MADE TO MOMENTA LOWER THAN IN THE EXPERIMENTAL RANGE.
NUMERICAL VALUES SUPPLIED BY P. JOOS.
We present an analysis of electroweak leptonic couplings from high statistics experiments on Bhabha scattering and μ pair production at an energy of 34.5 GeV. The forward-backward charge asymmetry of the μ pairs was measured to be −0.098±0.023±0.005. The data were found to agree well with the standard theory of electroweak interaction giving sin2θW=0.27±0.07. The leptonic weak couplings were determined to begv=0.000±0.170 andgA=−0.481±0.055. The data were also used to investigate a class of composite models for leptons.
No description provided.
No description provided.
Production of the F meson by e + e − annihilation at high energies has been obsrved in the ϕπ final state with a mass of 1.975 ± 0.009 ± 0.010 GeV and a width consistent with the mass resolution. The yield of F production times branching ratio relative to μ pair production is R F ( x ⩾ 0.3) B (F ± → ϕπ ± ) = 0.061 ± 0.012 ± 0.018.
No description provided.
CROSS BETWEEN X BRANCHING RATIO DETERMINATION. EXTRAPOLATION BELOW X=0.3 IS USED.
D ∗± production via e + e − → D ∗± X was studied at CM energies near 34 GeV. The charged particles produced in the hemisphere opposite to that of the D ∗ were used to investigate the fragmentation of charm jets. All spectra studied show a close similarity between the charm jet and the average jet obtained by summing over all quark flavours. The spectra of particles produced in the D ∗ hemisphere were used to study separately first rank and higher rank fragmentation.
THE C-JET IS THE JET IN THE HEMISPHERE OPPOSITE TO THAT CONTAINING THE D* MESON. DIVISION IS MADE BY A PLANE PERPENDICULAR TO THE THRUST AXIS.
No description provided.
The production of prompt muons ine+e− annihilation has been studied at centre of mass energies near 34.5 GeV. The measured semi-muonic branching ratios ofb andc quarks areB(b»Xμv) =0.117±0.028±0.01 andB(c→Xμv)=0.082 ±0.012a−0.01+0.02. The fragmentation functions of heavy quarks are hard,
THE VALUE OF ASYMMETRY WAS DETERMINED USING A SAMPLE OF PROMPT MUONS.
We present the general properties of jets produced bye+e− annihilation. Their production and fragmentation characteristics have been studied with charged particles for c.m. energies between 12 and 43 GeV. In this energy rangee+e− annihilation into hadrons is dominated by pair production of the five quarksu, d, s, c andb. In addition, hard gluon bremsstrahlung effects which are invisible at low energies become prominent at the high energies. The observed multiplicity distributions deviate from a Poisson distribution. The multiplicity distributions for the overall event as well as for each event hemisphere satisfy KNO scaling to within ∼20%. The distributions ofxp=2p/W are presented; scale breaking is observed at the level of 25%. The quantityxpdδ/dxp is compared with multigluon emission calculations which predict a Gaussian distribution in terms of ln(1/x). The observed energy dependence of the maximum of the distributions is in qualitative agreement with the calculations. Particle production is analysed with respect to the jet axis and longitudinal and transverse momentum spectra are presented. The angular distribution of the jet axis strongly supports the idea of predominant spin 1/2 quark pair production. The particle distributions with respect to the event plane show clearly the growing importance of planar events with increasing c.m. energies. They also exclude the presence of heavy quark production,e+e−→Q\(\bar Q\) for quark masses up to 5
R VALUES BELOW 32.5 GEV ARE IDENTICAL TO THOSE GIVEN IN BRANDELIK ET AL., PL 113B, 499 (1982).
No description provided.
CHARGED PARTICLE MULTIPLICITY DISTRIBUTIONS.
We have studied at CM energies of 14, 22 and 30–36.7 GeV e + e − annihilation events in which the hadronic final state contains both a proton and an antiproton in the momentum range 1.0 < p < GeV/ c . We find that such pairs are produced predominantly in the same jet and conclude that baryon-antibaryon production is dominated by a mechanism involving local compensation of baryon number.
BACKGROUND SUBTRACTED DATA.
BACKGROUND SUBTRACTED DATA.
Reconstruction of charged D ∗ 's produced inclusively in e + e −. annihilation at CM energies near 34.4 GeV is accomplished in the decay modes D ∗ + → D 0 π + → K − gp + π 0 π + and D ∗ + → D 0 π + → K − gp + π − π + π + and their charge conjugates. Using these and previously reported D ∗ + → D 0 π + → K − gp + π + and D ∗ + → D 0 π + → K − gp + π + + missing π 0 channels we present evidence for hard gluon bremsstrahlung from charm quarks and show that the ratio of the quark-gluon coupling constant of charm quarks to the coupling constant obtained in the average hadronic event, α s c α rms = 100 ± 0.20 ± 1.20 . Our result provides evidence that the quark-gluon coupling constant is independent of flavor.
No description provided.
No description provided.
No description provided.