Date

Collaboration

Subject_areas

Measurement of the total cross section from elastic scattering in $pp$ collisions at $\sqrt{s}=7$ TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Brad ; Abdallah, Jalal ; et al.
Nucl.Phys.B 889 (2014) 486-548, 2014.
Inspire Record 1312171 DOI 10.17182/hepdata.68910

A measurement of the total $pp$ cross section at the LHC at $\sqrt{s}=7$ TeV is presented. In a special run with high-$\beta^{\star}$ beam optics, an integrated luminosity of 80 $\mu$b$^{-1}$ was accumulated in order to measure the differential elastic cross section as a function of the Mandelstam momentum transfer variable $t$. The measurement is performed with the ALFA sub-detector of ATLAS. Using a fit to the differential elastic cross section in the $|t|$ range from 0.01 GeV$^2$ to 0.1 GeV$^2$ to extrapolate to $|t|\rightarrow 0$, the total cross section, $\sigma_{\mathrm{tot}}(pp\rightarrow X)$, is measured via the optical theorem to be: $$\sigma_{\mathrm{tot}}(pp\rightarrow X) = 95.35 \; \pm 0.38 \; ({\mbox{stat.}}) \pm 1.25 \; ({\mbox{exp.}}) \pm 0.37 \; (\mbox{extr.}) \; \mbox{mb},$$ where the first error is statistical, the second accounts for all experimental systematic uncertainties and the last is related to uncertainties in the extrapolation to $|t|\rightarrow 0$. In addition, the slope of the elastic cross section at small $|t|$ is determined to be $B = 19.73 \pm 0.14 \; ({\mbox{stat.}}) \pm 0.26 \; ({\mbox{syst.}}) \; \mbox{GeV}^{-2}$.

6 data tables match query

The measured total cross section, the first systematic error accounts for all experimental uncertainties and the second error for the extrapolation t-->0.

The nuclear slope of the differential eslastic cross section at small |t|, the first systematic error accounts for all experimental uncertainties and the second error for the extrapolation t-->0.

The Optical Point dsigma/(elastic)/dt(t-->0), the total elastic cross section and the observed elastic cross section within the fiducial volume. The first systematic error accounts for all experimental uncertainties and the second error for the extrapolation t-->0.

More…

Measurement of the total cross section from elastic scattering in $pp$ collisions at $\sqrt{s}=8$ TeV with the ATLAS detector

The ATLAS collaboration Aaboud, Morad ; Aad, Georges ; Abbott, Brad ; et al.
Phys.Lett.B 761 (2016) 158-178, 2016.
Inspire Record 1477585 DOI 10.17182/hepdata.73997

A measurement of the total $pp$ cross section at the LHC at $\sqrt{s}=8$ TeV is presented. An integrated luminosity of $500$ $\mu$b$^{-1}$ was accumulated in a special run with high-$\beta^{\star}$ beam optics to measure the differential elastic cross section as a function of the Mandelstam momentum transfer variable $t$. The measurement is performed with the ALFA sub-detector of ATLAS. Using a fit to the differential elastic cross section in the $-t$ range from $0.014$ GeV$^2$ to $0.1$ GeV$^2$ to extrapolate $t\rightarrow 0$, the total cross section, $\sigma_{\mathrm{tot}}(pp\rightarrow X)$, is measured via the optical theorem to be: $\sigma_{\mathrm{tot}}(pp\rightarrow X) = {96.07} \; \pm 0.18 \; ({{stat.}}) \pm 0.85 \; ({{exp.}}) \pm 0.31 \; ({extr.}) \; {mb} \;,$ where the first error is statistical, the second accounts for all experimental systematic uncertainties and the last is related to uncertainties in the extrapolation $t\rightarrow 0$. In addition, the slope of the exponential function describing the elastic cross section at small $t$ is determined to be $B = 19.74 \pm 0.05 \; ({{stat.}}) \pm 0.23 \; ({{syst.}}) \; {GeV}^{-2}$.

6 data tables match query

The measured total cross section, the first systematic error accounts for all experimental uncertainties and the second error for the extrapolation t-->0.

The nuclear slope of the differential eslastic cross section at small |t|, the first systematic error accounts for all experimental uncertainties and the second error for the extrapolation t-->0.

The total elastic cross section and the observed elastic cross section within the fiducial volume.

More…

PION-PROTON ELASTIC SCATTERING FROM 2.3-6.0 BEV/C WITH SPECIAL REFERENCE TO THE BACKWARD DIRECTION

Williams, David Gerald ;
PhD Thesis, Michigan U., 1966.
Inspire Record 1407538 DOI 10.17182/hepdata.70292

None

12 data tables match query

No description provided.

No description provided.

No description provided.

More…

Elastic Differential Cross Sections for pi + /- + p Scattering from 2.3-6.0 BeVc

Coffin, C.T. ; Dikmen, N. ; Ettlinger, L. ; et al.
Phys.Rev. 159 (1967) 1169-1175, 1967.
Inspire Record 52242 DOI 10.17182/hepdata.26578

Elastic differential cross sections were measured at 6 energies between 2.3 and 6 BeVc for π++p and π−+p. The behavior of the secondary peak as a function of energy and charge is shown. Evidence for considerable resonance structure is seen in the angular distributions.

1 data table match query

No description provided.


Measurement of Particle and anti-Particle Elastic Scattering on Protons Between 6-GeV and 14-GeV

Brandenburg, G.W. ; Carnegie, R.K. ; Cashmore, R.J. ; et al.
Phys.Lett.B 58 (1975) 367-370, 1975.
Inspire Record 100639 DOI 10.17182/hepdata.5543

Differential cross sections in the t -range between 0.02 and 1.5 GeV 2 have been measured for the elastic scattering of particles and antiparticles on protons at 6.4, 10.4 and 14 GeV for K ± p and 10.4 GeV for π ± p and p ± p . Large statistics have been achieved and systematic uncertainties have been minimized. The relative systematic uncertainty between particle and antiparticle data is less than 0.5%. Accurate measurements of the position of the first crossover between particle and antiparticle differential cross sections have been performed. As the energy increases from 6.4 to 14 GeV the K ± p crossover moves to smaller values by 0.010 GeV 2 with a statistical error of 0.006 GeV 2 and a systematic uncertainty of 0.005 GeV 2 . The crossover positions at 10.4 GeV for π ± , K ± and p ± scale approximately with the interaction radii.

10 data tables match query

CROSSOVER POSITION IS -T = 0.209 +- 0.004 (DSYS = 0.003) GEV**2.

CROSSOVER POSITION IS -T = 0.209 +- 0.004 (DSYS = 0.003) GEV**2. SMALL ANGLE CROSS SECTIONS IN SMALLER T-BINS.

CROSSOVER POSITION IS -T = 0.211 +- 0.004 (DSYS = 0.0025) GEV**2.

More…

Measurement of the Real Part of the Forward Scattering Amplitude in K+- p Elastic Scattering at 10.4-GeV/c and 14-GeV/c

Carnegie, R.K. ; Cashmore, R.J. ; Davier, M. ; et al.
Phys.Lett.B 59 (1975) 308-312, 1975.
Inspire Record 100638 DOI 10.17182/hepdata.48091

The differential cross section for K ± p elastic scattering has been measured in the very low t region (0.003 < t < 0.2 GeV 2 ) in a wire chamber spectrometer experiment at 10.4 and 14 GeV/ c . The interference effect observed between the Coulomb and the nuclear interaction has been used to determine α, the ratio of real to imaginary part of the forward scattering amplitude. At 10.4 GeV/ c we measure α (K + p) = −0.21 ± 0.06 and α (K − p = 0.08 ± 0.04, and at 14 GeV/ c , α (K + p) = − 0.13 ± 0.03 and α (K − p) = 0.000 ± 0.04 in agreeement with the predictions of dispersion theory calculation.

1 data table match query

No description provided.


Version 2
Measurement of the total cross section and $\rho$-parameter from elastic scattering in $pp$ collisions at $\sqrt{s}=13$ TeV with the ATLAS detector

The ATLAS collaboration Aad, Georges ; Abbott, Braden Keim ; Abbott, D.C. ; et al.
Eur.Phys.J.C 83 (2023) 441, 2023.
Inspire Record 2122408 DOI 10.17182/hepdata.128017

In a special run of the LHC with $\beta^\star = 2.5~$km, proton-proton elastic-scattering events were recorded at $\sqrt{s} = 13~$TeV with an integrated luminosity of $340~\mu \textrm{b}^{-1}$ using the ALFA subdetector of ATLAS in 2016. The elastic cross section was measured differentially in the Mandelstam $t$ variable in the range from $-t = 2.5 \cdot 10^{-4}~$GeV$^{2}$ to $-t = 0.46~$GeV$^{2}$ using 6.9 million elastic-scattering candidates. This paper presents measurements of the total cross section $\sigma_{\textrm{tot}}$, parameters of the nuclear slope, and the $\rho$-parameter defined as the ratio of the real part to the imaginary part of the elastic-scattering amplitude in the limit $t \rightarrow 0$. These parameters are determined from a fit to the differential elastic cross section using the optical theorem and different parameterizations of the $t$-dependence. The results for $\sigma_{\textrm{tot}}$ and $\rho$ are \begin{equation*} \sigma_{\textrm{tot}}(pp\rightarrow X) = \mbox{104.7} \pm 1.1 \; \mbox{mb} , \; \; \; \rho = \mbox{0.098} \pm 0.011 . \end{equation*} The uncertainty in $\sigma_{\textrm{tot}}$ is dominated by the luminosity measurement, and in $\rho$ by imperfect knowledge of the detector alignment and by modelling of the nuclear amplitude.

11 data tables match query

The measured total cross section. The systematic uncertainty includes experimental and theoretical uncerainties.

The rho-parameter, i.e. the ratio of the real to imaginary part of the elastic scattering amplitude extrapolated to t=0. The systematic uncertainty includes experimental and theoretical uncerainties.

The nuclear slope parameter B from a fit of the form exp(-Bt-Ct^2-Dt^3). The systematic uncertainty includes experimental and theoretical uncerainties.

More…

The Structure of the Forward Elastic Cross-Section in 10-GeV-14-GeV Range

Carnegie, R.K. ; Cashmore, R.J. ; Davier, M. ; et al.
Phys.Lett.B 59 (1975) 313-316, 1975.
Inspire Record 100641 DOI 10.17182/hepdata.27763

The logarithmic slope of the differentical cross section for K ± p elastic scattering at 10 and 14 GeV, and for π ± p and p ± p at 10GeV has been measured. Rich structure is observed in the forward slope for all processes, which is well accounted for by the properties of a peripheral exchange amplitude for the nonexotic reactions, and by a peripheral component of the diffractive amplitude as clearly seen in the exotic processes, K ± p and pp.

2 data tables match query

GRAPH OF D(SIG)/DT.

SLOPE AS A FUNCTION OF T.


$\pi^{-} + p$ elastic scattering in the neighbourhood of $N^{*}_1/2$ (2190)

Busza, W. ; Davis, D.G. ; Duff, B.G. ; et al.
Nuovo Cim.A 52 (1967) 331-341, 1967.
Inspire Record 1185326 DOI 10.17182/hepdata.37568

Elastic π−+p differential cross-section data are presented at the incident-pion momenta 1.72, 1.89, 2.07, 2.27 and 2.46 GeV/c. Resonant behaviour in the coefficients of a Legendre polynomial expansion indicates G- or H-wave resonance. Further analysis using an energy-dependent parametrization of G- and H-waves shows the results to be compatible with the 7−/2 assignment for the , but equally acceptable solutions are obtained with the inclusion of an additional 9+/2 resonance contribution.

5 data tables match query

No description provided.

No description provided.

No description provided.

More…

Wide-angle proton-proton elastic scattering from 1.3 to 3.0 gev/c

Williams, D.T. ; Bloodworth, I.J. ; Eisenhandler, E. ; et al.
Nuovo Cim.A 8 (1972) 447-469, 1972.
Inspire Record 78276 DOI 10.17182/hepdata.37468

Differential cross-sections for proton-proton elastic scattering have been measured covering the angular range from 50° to 90° c.m. at twelve incident momenta from 1.3 to 3.0 GeV/c. The angular distributions are quite smooth, but there is evidence of structure in the energy dependence of fixed-angle cross-sections at |t| ∼ 1 (GeV)2.

24 data tables match query

No description provided.

No description provided.

No description provided.

More…