Date

Measurement of B0 anti-B0 mixing at the Fermilab Tevatron collider

The CDF collaboration Abe, F. ; Amidei, Dante E. ; Apollinari, G. ; et al.
Phys.Rev.Lett. 67 (1991) 3351-3355, 1991.
Inspire Record 332810 DOI 10.17182/hepdata.19881

The B0 B¯ 0 average mixing parameter χ has been extracted from eμ and ee events produced in pp¯ collisions at √s =1.8 TeV. In a sample of 900 eμ events, the like-sign to opposite-sign charge ratio R is measured to be 0.556±0.048(stat)−0.042+0.035(syst). In the absence of mixing, the expected value of R would be 0.23±0.06. The corresponding number for 212 ee events is 0.573±0.116(stat)±0.047(syst) with an expected nonmixing value of 0.24±0.07. The observed excess in R leads to a combined determination of χ=0.176±0.031(stat+syst) ±0.032 (model), where the last uncertainty is due to Monte Carlo modeling.

2 data tables

No description provided.

No description provided.


Study of inclusive Lambda production in e+ e- annihilations at 29-GeV

The HRS collaboration Geld, T.L. ; Neal, H. ; Akerlof, C. ; et al.
Phys.Rev.D 45 (1992) 3949-3954, 1992.
Inspire Record 339573 DOI 10.17182/hepdata.22726

Cross sections are presented for the inclusive production of Λ hyperons in electron-positron annihilations at s=29 GeV based on the full 291-pb−1 sample of data taken in the High Resolution Spectrometer experiment at the SLAC e+e− storage ring PEP. These results, and the associated correlation analyses, are consistent with the Lund model predictions with the strange diquark suppression ratio δ fixed at 0.59±0.10±0.18, as compared to the standard Lund value of 0.32. The Λ multiplicity has been found to be 0.182±0.020 per event. The opposite-strangeness multiplicity 〈nΛΛ¯〉 has been measured to be 0.046±0.020, whereas the like-strangeness multiplicity 〈nΛΛ+Λ¯Λ¯〉 is 0.009±0.028. A strong correlation is found between Λ's and Λ¯'s; when one is found in an event, the other is found in the same event with a probability that exceeds 50%.

4 data tables

No description provided.

Extrapolate to full z interval using Lund fit.

No description provided.

More…

A Measurement of the B meson and b quark cross-sections at s**(1/2) = 1.8-TeV using the exclusive decay B+- ---> J / psi K+-

The CDF collaboration Abe, F. ; Amidei, Dante E. ; Apollinari, G. ; et al.
Phys.Rev.Lett. 68 (1992) 3403-3407, 1992.
Inspire Record 333080 DOI 10.17182/hepdata.19852

This letter reports the full reconstruction of B mesons through the decay chain B±→J/ψ K±, J/ψ→μ+μ−, using data obtained at the Collider Detector at Fermilab in p¯p collisions at √s =1.8 TeV. This exclusive sample, the first observed at a hadron collider, is then used to measure the B-meson cross section, from which we extract the b-quark cross section. We obtain σ=2.8±0.9 (stat) ±1.1(syst) μb for B− mesons with PT>9.0 GeV/c and rapidity ‖y‖<1.0. We obtain σ=6.1±1.9(stat) ±2.4(syst) μb, for b quarks with transverse momentum PT>11.5 GeV/c and rapidity ‖y‖<1.0.

2 data tables

B-meson cross section.

B-quark cross section.


A Measurement of the b anti-b forward backward asymmetry using the semileptonic decay into muons

The DELPHI collaboration Abreu, P. ; Adam, W. ; Adami, F. ; et al.
Phys.Lett.B 276 (1992) 536-546, 1992.
Inspire Record 322498 DOI 10.17182/hepdata.29264

The forward-backward asymmetry of bottom quarks is measured with statistics of approximately 80 000 hadronic Z 0 decays produced in e + e − collisions at a centre of mass energy of √ s ≈ M z . The tagging of b quark events has been performed using the semileptonic decay channel b→X+ μ . Because the asymmetry depends on the weak coupling, this leads to a precise measurement of the electroweak mixing angle sin 2 θ w . The experimental result is A FB b = 0.115±0.043(stat.)±0.013(syst.). After correcting the value for the B 0 B 0 mixing this becomes A FB b =0.161±0.060(stat.)±0.021(syst.) corresponding to sin 2 θ W MS =0.221±0.011( stat. )±0.004( syst. ) .

3 data tables

Experimentally measured asymmetry.

Asymmetry corrected for mixing using mixing parameter 0.143 +- 0.023.

SIN2TW measured in MSBAR scheme.


Measurement of the ratio sigma B (W ---> tau-neutrino) / sigma B (W ---> e neutrino), in p anti-p collisions at s**(1/2) = 1.8-TeV

The CDF collaboration Abe, F. ; Amidei, Dante E. ; Apollinari, G. ; et al.
Phys.Rev.Lett. 68 (1992) 3398-3402, 1992.
Inspire Record 324086 DOI 10.17182/hepdata.19851

We have observed over 102 events of the type W→τν followed by τ→ hadrons, where the taus are identified by their decay into one or three charged particles. We measure the cross section times branching ratio for pp¯→W→τν and compare it to the value for W→eν to directly measure the ratio of weak coupling constants gτ/ge. We find gτ/ge=0.97±0.07, consistent with lepton universality.

3 data tables

Results from the missing ET trigger.

Results from the tau trigger.

Results from the combined ET trigger.


Properties of multi - hadronic events with a final state photon at s**(1/2) = M (Z0)

The OPAL collaboration Acton, P.D. ; Alexander, G. ; Allison, John ; et al.
Z.Phys.C 54 (1992) 193-210, 1992.
Inspire Record 322027 DOI 10.17182/hepdata.14650

The properties of final state photons in multihadronic decays of theZ0 and those of the recoiling hadronic system are discussed and compared with theoretical expectations. The yield of two and three jet events with final state photons is found to be in good agreement with the expectation from a matrix element calculation ofO(ααs. Uncertainties in the interpretation of the theoretical calculation do not yet permit a final assessment of events with just one reconstructed jet. Comparing the rates of two jet events with a photon to those of three jet events in the inclusive multihadronic sample, the strong coupling constant in second order is determined asαs\((M_{Z^0 } )\)=0.122±0.010, taking into account only the statistical and experimental systematic errors. It is found that an abelian model of the strong interaction does not describe the data. The comparison of the total yield and the jet rates with QCD shower programs shows better agreement with the ARIADNE model than with the JETSET model. Both programs are found to describe well the photon properties and the properties of the residual hadronic event.

4 data tables

No description provided.

No description provided.

No description provided.

More…

Production of strange particles in the hadronic decays of the Z0

The DELPHI collaboration Abreu, P. ; Adam, W. ; Adami, F. ; et al.
Phys.Lett.B 275 (1992) 231-242, 1992.
Inspire Record 322503 DOI 10.17182/hepdata.29267

An analysis of the production of strange particles from the decays of the Z 0 boson into multihadronic final states is presented. The analysis is based on about 90 000 selected hadronic Z 0 decays collected by the DELPHI detector at LEP in 1990. K s 0 , K ∗± , Λ( Λ ) and Ξ − ( Ξ + ) have been identified by their characteristic decays. The measured production cross sections are compared with predictions of the Lund Monte Carlo tuned to data at PEP/PETRA energies.

7 data tables

No description provided.

No description provided.

No description provided.

More…

A Study of charged particle multiplicities in hadronic decays of the Z0

The OPAL collaboration Acton, P.D. ; Alexander, G. ; Allison, John ; et al.
Z.Phys.C 53 (1992) 539-554, 1992.
Inspire Record 321190 DOI 10.17182/hepdata.14774

We present an analysis of multiplicity distributions of charged particles produced inZ0 hadronic decays. The results are based on the analysis of 82941 events collected within 100 MeV of theZ0 peak energy with the OPAL detector at LEP. The charged particle multiplicity distribution, corrected for initial-state radiation and for detector acceptance and resolution, was found to have a mean 〈nch〉=21.40±0.02(stat.)±0.43(syst.) and a dispersionD=6.49±0.02(stat.)±0.20(syst.). The shape is well described by the Lognormal and Gamma distributions. A negative binomial parameterisation was found to describe the shape of the multiplicity distribution less well. A comparison with results obtained at lower energies confirms the validity of KNO(-G) scaling up to LEP energies. A separate analysis of events with low sphericity, typically associated with two-jet final states, shows the presence of features expected for models based on a stochastic production mechanism for particles. In all cases, the features observed in the data are well described by the Lund parton shower model JETSET.

8 data tables

Distribution for whole event. The data at multiplicites 2 and 4 come from Monte Carlo data.

Distribution for single hemisphere.

Distribution for whole event. The data at multiplicites 2 and 4 come from Monte Carlo data.. Contributions from K0S and LAMBDA decays have been subtracted.

More…

Measurement of rho, the ratio of the real to imaginary part of the anti-p p forward elastic scattering amplitude, at S**(1/2) = 1.8-TeV

The E710 collaboration Amos, Norman A. ; Avila, C. ; Baker, W.F. ; et al.
Phys.Rev.Lett. 68 (1992) 2433-2436, 1992.
Inspire Record 320369 DOI 10.17182/hepdata.42565

We have measured ρ, the ratio of the real to the imaginary part of the p¯p forward elastic-scattering amplitude, at √s =1.8 TeV. Our result, ρ=0.140±0.069, is compared with extrapolations from lower-energy data based on dispersion relations, and with the UA4 value at √s =546 GeV.

2 data tables

Results of least square's fit to the distribution.

Total cross section from fit to data.


Measurement of the charged particle multiplicity distribution in hadronic Z decays

The ALEPH collaboration Decamp, D. ; Deschizeaux, B. ; Goy, C. ; et al.
Phys.Lett.B 273 (1991) 181-192, 1991.
Inspire Record 319520 DOI 10.17182/hepdata.29273

The charged particle multiplicity distribution of hadronic Z decays was measured on the peak of the Z resonance using the ALEPH detector at LEP. Using a model independent unfolding procedure the distribution was found to have a mean 〈 n 〉=20.85±0.24 and a dispersion D =6.34±0.12. Comparison with lower energy data supports the KNO scaling hypothesis in the energy range s =29−91.25 GeV. At s =91.25 GeV the shape of the multiplicity distribution is well described by a log-normal distribution, as predicted from a cascading model for multi-particle production. The same model also successfully describes the energy dependence of the mean and width of the multiplicity distribution. A next-to-leading order QCD prediction in the framework of the modified leading-log approximation and local parton-hadron duality is found to fit the energy dependence of the mean but not the width of the charged multiplicity distribution, indicating that the width of the multiplicity distribution is a sensitive probe for higher order QCD or non-perturbative effects.

2 data tables

Unfolded charged particle multiplicity distribution. The entry for N=2 is from the LUND 7.2 parton shower model.

Leading moments of the charged particle multiplicity. R2 is the second binomial moment given by MEAN(MULT(MULT-1))/(MEAN(MULT))**2.