The differential cross sections dσ/dxF for J/ψ produced inclusively in 800 GeV/c p-Cu and p-Be collisions have been measured in the kinematic range 0.30≤xF≤0.95 through the decay mode J/ψ→μ+μ−. They are compared with the predictions of the semilocal duality model for several sets of parton density functions. No evidence for a suggested intrinsic charm contribution to the cross section is observed. The ratio of the differential cross sections for Cu and Be targets confirms the suppression of J/ψ production in heavy nuclei at large xF.
No description provided.
No description provided.
An analysis of the production of the Λ baryon in the hadronic decays of the Z 0 is presented, based on about 993K multihadronic events collected by the DELPHI detector at LEP during 1991 and 1992. The differencial cross section of the Λ and the correlations between Λ and Λ produced in the same event are compared to current models, based both on string fragmentation and on cluster decay. The predictions of the string fragmentation model are found to give satisfactory agreements with the data, clearly better than those of the cluster model.
No description provided.
Combined LAMBDA and LAMBDABAR multiplicity.
Errors contain systematic uncertainties.
This paper presents our first measurement of the F 2 structure function in neutral-current, deep inelastic scattering using the ZEUS detector at HERA, the ep colliding beam facility at DESY. The data correspond to an integrated luminosity of 24.7 nb −1 . Results are presented for data in range of Q 2 from 10 GeV 2 to 4700 GeV 2 and Bjorken x down to 3.0 × 10 −4 . The F 2 structure function increases rapidly as x decreases.
No description provided.
No description provided.
No description provided.
Measurements of elastic photoproduction cross sections for the J / ψ meson from 100 GeV to 375 GeV are presented. The results indicate that the cross section increases slowly in this range. The shape of the energy dependence agrees well with the photon-gluon fusion model prediction.
Data supplied by V. Paolone.
Cross section data using Bethe-Heitler event normalization.
Cross section data using the Beam Gamma Monitor normalization.
A measurement of the proton structure function F 2 ( x , Q 2 ) is presented with about 1000 neutral current deep inelastic scattering events for Bjorken x in the range x ⋍ 10 −2 – 10 −4 and Q 2 > 5 GeV 2 . The measurement is based on an integrated luminosity of 22.5 nb −1 recorded by the H1 detector in the first year of HERA operation. The structure function F 2 ( x , Q 2 ) shows a significant rise with decreasing x .
No description provided.
No description provided.
No description provided.
Antiproton-proton elastic scattering was measured at c.m.s. energies √s =546 and 1800 GeV in the range of four-momentum transfer squared 0.025<-t<0.29 GeV2. The data are well described by the exponential form ebt with a slope b=15.28±0.58 (16.98±0.25) GeV−2 at √s =546 (1800) GeV. The elastic scattering cross sections are, respectively, σel=12.87±0.30 and 19.70±0.85 mb.
Final results (systematic errors included).
Final results (systematic errors included).
Statistical errors only. Data supplied by S. Belforte.
In this paper we present a study on the production of the J ψ and ψ′ resonances, decaying into muon pairs, in S-U collisions, at 200 GeV per incident nucleon. We find that the ratio between ψ′ and tJ ψ yields decreases as E T , the neutral transverse energy produced in the collision, increases. There is also a clear decrease of this ratio when going from p-W to S-U interactions. Assuming the high mass continuum to be Drell-Yan we discuss the possible understanding of the intermediate dimuon mass region as a superposition of Drell-Yan (extrapolated down in mass) and muon pairs from the semileptonic decays of charmed mesons. The p-W data is found to be explained by this procedure. However, the S-U data seems to be incompatible with a linear extrapolation from the proton-nucleus results.
THE NEUTRAL TRANSVERSE ENERGY PRODUCED IN THE COLLISION > 15 GEV.
THE NEUTRAL TRANSVERSE ENERGY PRODUCED IN THE COLLISION > 15 GEV.
THE NEUTRAL TRANSVERSE ENERGY PRODUCED IN THE COLLISION > 15 GEV.
We report a measurement of the diffraction dissociation differential cross section d2σSD/dM2dt for p¯p→p¯X at √s =546 and 1800 GeV, M2/s<0.2 and 0≤-t≤0.4 GeV2. Our results are compared to theoretical predictions and to extrapolations from experimental results at lower energies.
Single diffraction dissociation cross section.
We report a measurement of the proton-antiproton total cross section σT at c.m.s. energies √s =546 and 1800 GeV. Using the luminosity-independent method, we find σT=61.26±0.93 mb at √s =546 GeV and 80.03±2.24 mb at √s =1800 GeV. In this energy range, the ratio σel/σT increases from 0.210±0.002 to 0.246±0.004.
No description provided.
Assuming RHO = 0.15.
We present measurements of the hadronic photon structure functionF2γ(x), in twoQ2 ranges with mean values of 5.9 GeV2 and 14.7 GeV2. The data were taken by the OPAL experiment at LEP, with\(\sqrt s\) close to theZ0 mass and correspond to an integratede+e− luminosity of 44.8 pb−1. In the context of a QCD-based model we find the quark transverse momentum cutoff separating the vector meson dominance (VMD) and perturbative QCD regions to be 0.27±0.10 GeV. We confirm that there is a significant pointlike component of the photon when the probe photon hasQ2>4 GeV2. Our measurements extend to lower values ofx than any previous experiment, and no increase ofF2γ(x) is observed.
Additional overall systematic error 5.9% not included.
Additional overall systematic error 5.9% not included.