We perform an amplitude analysis of 10 GeV/ c π − p → K − K S 0 p data as a function of K − K 0 mass from threshold up to 2 GeV. We find that the A 2 and g resonances are produced dominantly by natural and unnatural parity exchange, respectively, and we determine their resonance parameters. We present further evidence for the I = 1, 4 + state A 2 ∗ (1900), in particular by isolating interference effects. The structure of S-wave K − K 0 production suggests an I = 1, 0 + state just below 1300 MeV of width about 250 MeV.
CROSS SECTIONS FROM FITTING MASS SPECTRUM. THE RESONANT AMPLITUDE CONTRIBUTIONS ALSO GIVEN IN PAPER.
For the first time, the line reversed reactions π + p→K + Σ + and K − p→ π − Σ + have been studied in the same apparatus. We present the differential cross sections and polarizations over a large t range and at two momenta, 7.0 and 10.1 GeV/ c . The differential cross sections as a function of t are shown for the first time to cross over. Going from the lower to the higher momentum, the differences in cross section between the two reactions diminish at low | t | by about a factor 2. We find large polarizations of opposite sign for the two reactions. The momentum dependence, presented in the form of α eff ( t ) for the t range 0 to −2 (GeV/ c ) 2 , is compared with the expectations from the K ∗ −K ∗∗ trajectory.
-TMIN = 0.0100 GEV**2.
-TMIN = -0.0087 GEV**2.
-TMIN = 0.0067 GEV**2.
The absolute normalisation of the polarisation in pp elastic scattering at 24 degrees lab has been determined by means of a double-scattering experiment to an accuracy of +or-1.5% at five energies between 200 and 520 MeV.
No description provided.
Measurements of the total cross section have been performed at the ISR with c.m. energies between 23.5 GeV and 62.5 GeV. Two independent experimental methods have been applied, a measurement of total interaction rate and of small angle elastic scattering. Both experiments give consistent results showing that the total cross section increases by (11.8±1.5) % over the ISR energy range. This experiment has also measured the slope of the forward diffraction peak in elastic scattering at small momentum transfer. The elastic cross section shows the same relative rise as the total cross section, and the ratio λ of elastic to total cross section approaches a constant value of λ =0.178±0.003.
.
TOTAL CROSS SECTION FROM (INTERACTION RATE)/(LUMINOSITY). SYSTEMATIC ERROR <0.8 PCT.
TOTAL CROSS SECTION FROM APPLYING THE OPTICAL THEOREM TO SMALL ANGLE ELASTIC SCATTERING EXTRAPOLATED TO T=0.
The reactions p p → K ∗ (890) X , p p →Σ ± (1385) X and p p → S ∗ (993) X at 12 GeV/ c incident momentum have been studied using 19 000 events with a visible V 0 decay in BEBC. Inclusive production cross sections of these resonances as a function of transverse momentum and rapidity are presented. The contribution of annihilation to the production of the K ∗ (890) is investigated from a comparison with the corresponding pp data.
COMBINDED K*+ AND K*- DATA IN THIS TABLE.
COMBINDED K*+ AND K*- DATA IN THIS TABLE.
No description provided.
The reaction p p → π − π + has been studied at 10.1 GeV/ c in the − t interval from 0.15 to 1.5 (GeV/ c ) 2 . A line-reversal comparison with backward elastic scattering π + p → p π + shows good agreement for − t > 0.3 (GeV/ c ) 2 .
No description provided.
No description provided.
Single-pion production in p p interactions at 9.1 GeV/ c is analysed and cross sections are given. The p lab dependence of the isospin amplitudes is determined by a fit to the world data. The data are also compared with the predictions of a reggeized Deck model. The results and the N π N amplitudes are compared with the results at other energies and with the corresponding N π N amplitudes.
MEASUREMENTS FROM OTHER EXPERIMENTS DOWN TO PLAB = 1 GEV ALSO QUOTED.
No description provided.
Cross sections have been determined for the inclusive production of vector (ϱ 0 , ω, K ∗ ) and tensor (f, A 2 ± ) mesons in p p reactions at 9.1 GeV/c for both annihilation and non-annihilation processes. Distributions in the Feynman variable x and transverse momentum squared, p T 2 , have been examined for the ϱ 0 , ω and f mesons. The slopes for p T 2 appear to be exponential and decrease with increasing particle mass for both annihilation and non-annihilation reactions, furthermore the slopes have consistently higher values for non-annihilation reactions. Comparisons with other data indicate that the ratio ϱ 0 / π − is independent of antiproton momentum in annihilation processes.
NON-ANNIHILATION EVENTS.
No description provided.
No description provided.
The differential elastic p−p scattering cross section was measured at 6 GeV/c at the Argonne Zero Gradient Synchrotron in the range P⊥2=0.60−1.0 (GeV/c)2 using a 65% polarized target and a 75% polarized proton beam of intensity 3 × 109 protons/pulse. The polarization of the recoil proton was simultaneously measured with a well calibrated carbon-target polarimeter. All three polarizations were measured perpendicular to the horizontal scattering plane. Our results indicate that P and T invariance are both obeyed to good precision even at our largest P⊥2. Parity invariance implies that the eight single-flip transversity cross sections are zero, so our data gives the magnitudes of the eight remaining pure spin cross sections where all spins are measured. We find that the four double-flip transversity cross sections are nonzero.
No description provided.
THE FIVE INDEPENDENT PURE FOUR-SPIN CROSS SECTIONS AS DERIVED FROM THE EIGHT MEASURED THREE-SPIN CROSS SECTIONS ASSUMING P AND T INVARIANCE. THE ABSOLUTE DIFFERENTIAL CROSS SECTION VALUES ASSUME THAT THE SPIN-AVERAGED D(SIG)/DT IS 2.25, 1.17, 0.365 AND 0.167 MB/GEV**2 FOR EACH VALUE OF PT**2 RESPECTIVELY.
WOLFENSTEIN PARAMETERS. POL(NAME=A) IS (N000) OR (0N00), THE ANALYZING POWER AVERAGED OVER TARGET OR BEAM POLARIZATION. POL(NAME=P) IS (00N0), THE POLARIZATION PARAMETER. TIME-REVERSAL INVARIANCE REQUIRES THAT P = A. POL.POL(NAME=CNN) IS (NN00) USING T-INVARIANCE. POL.POL(NAME=DNN) IS (0N0N). POL.POL(NAME=KNN) IS (N00N). POL.POL(NAME=C3N) IS A COMPONENT OF THE TRIPLE SPIN CORRELATION TENSOR. PARITY INVARIANCE REQUIRES THAT C3N = P.
At the CERN intersecting storage ring the inclusive differential cross section [dσdσ]y=1 has been measured for f0, g0, K*0(1420), and K¯*0(1420) production: We obtain 0.58±0.05 mb, 0.09±0.05 mb, 38±15 μb, and 26±13 μb, respectively. The corresponding total inclusive cross sections are estimated to be 2.62±0.26 mb, 0.40±0.22 mb, 154±60 μb, and 107±52 μb, respectively. The magnitude of the K* cross section implies a cross section of approximately 5 μb for production of a charmed DD¯ pair.
No description provided.
No description provided.