The properties of final state photons in multihadronic decays of theZ0 and those of the recoiling hadronic system are discussed and compared with theoretical expectations. The yield of two and three jet events with final state photons is found to be in good agreement with the expectation from a matrix element calculation ofO(ααs. Uncertainties in the interpretation of the theoretical calculation do not yet permit a final assessment of events with just one reconstructed jet. Comparing the rates of two jet events with a photon to those of three jet events in the inclusive multihadronic sample, the strong coupling constant in second order is determined asαs\((M_{Z^0 } )\)=0.122±0.010, taking into account only the statistical and experimental systematic errors. It is found that an abelian model of the strong interaction does not describe the data. The comparison of the total yield and the jet rates with QCD shower programs shows better agreement with the ARIADNE model than with the JETSET model. Both programs are found to describe well the photon properties and the properties of the residual hadronic event.
No description provided.
No description provided.
No description provided.
We report on an improved measurement of the value of the strong coupling constant σ s at the Z 0 peak, using the asymmetry of the energy-energy correlation function. The analysis, based on second-order perturbation theory and a data sample of about 145000 multihadronic Z 0 decays, yields α s ( M z 0 = 0.118±0.001(stat.)±0.003(exp.syst.) −0.004 +0.0009 (theor. syst.), where the theoretical systematic error accounts for uncertainties due to hadronization, the choice of the renormalization scale and unknown higher-order terms. We adjust the parameters of a second-order matrix element Monte Carlo followed by string hadronization to best describe the energy correlation and other hadronic Z 0 decay data. The α s result obtained from this second-order Monte Carlo is found to be unreliable if values of the renormalization scale smaller than about 0.15 E cm are used in the generator.
Value of LAMBDA(MSBAR) and ALPHA_S.. The first systematic error is experimental, the second is from theory.
The EEC and its asymmetry at the hadron level, unfolded for initial-state radiation and for detector acceptance and resolution. Errors include full statistical and systematic uncertainties.
The doubly differential cross section for the production of He3 and He4 by 800 MeV protons from C12, Ti, and Pb has been measured at laboratory angles of 6° and 15°. The momentum of the detected helium nuclei varied from 1 to 2 GeV/c, the maximum being well above the incident proton momentum of 1.46 GeV/c. The cross sections were found to increase with increasing target mass and decrease with increasing momentum and scattering angle. In our momentum region, the He3 production cross section is 1.5–10 times larger than He4 depending on the target and the momentum. The data are consistent with the hypothesis that the dominant reaction mechanism is a direct process where the initial nucleon-nucleon scattering is followed by a sequential pickup of neutrons.
No description provided.
No description provided.
No description provided.
Measurements are reported of inclusive production of η-mesons in the beam fragmentation region in γp, πp andKp collisions. Results include a small but significant departure from VMD, and a pronounced rise in theη/π0 ratio with increasingpT.
No description provided.
No description provided.
No description provided.
Inelastic scattering of 490 GeV μ + from deuterium and xenon nuclei has been studied for x Bj > s .001. The ratio of the xenon/deuterium cross section per nucleon is observed to vary with x Bj , with a depletion in the kinematic range 0.001 < x Bj < 0.025 which exhibits no significant Q 2 dependence. An electromagnetic calorimeter was used to verify the radiative corrections.
Xenon structure function parameterized as being equal to the DEUT structurefunction.
Xenon structure function parameterized by an x-dependent shadowing factor times the DEUT structure function.
The value of the strong coupling constant,$$\alpha _s (M_{Z^0 } )$$, is determined from a study of 15 d
Differential jet mass distribution for the heavier jet using method T. The data are corrected for the finite acceptance and resolution of the detector and for initial state photon radiation.
Differential jet mass distribution for the jet mass difference using methodT. The data are corrected for the finite acceptance and resolution of the detec tor and for initial state photon radiation.
Differential jet mass distribution for the heavier jet using method M. The data are corrected for the finite acceptance and resolution of the detector and for initial state photon radiation.
We observe evidence for the production of b-flavoured baryons in decays of the Z 0 boson with the OPAL detector at LEP. We find 68 Λl − , Λ l + candidates in 458 583 hadronic Z 0 decays. We interpret this as a signal of 55 ± 9 +0.3 −3.1 events from the semi-leptonic decays of b baryons. Assuming weakly decaying b baryons produced in Z 0 decays are mostly Λ b particles, we measure the product branching ratio (Γ b b /Γ had ) f ( b →Λ b ) B (Λ b →Λl − v X ) , averaged over the electron and muon channels, to be (6.2±1.0±1.5)×10 −4 .
FD is considered as a quark fragmentation fraction. Charge conjugated state is understood.
The ratio of cross sections for inelastic muon scattering on xenon and deuterium nuclei was measured at very low Bjorken x (0.000 02<xBj<0.25). The data were taken at Fermilab experiment E-665 with a 490 GeV/c muon beam incident on liquid deuterium and gaseous xenon targets. Two largely independent analysis techniques gave statistically consistent results. The xenon-to-deterium per-nucleon cross-section ratio is constant at approximately 0.7 for xBj below 0.003.
Data using Electromagnetic Cuts.
Data using Hadron Requirement.
Results are reported of a study of neutral vector meson production in multihadronicZ0 decays in the OPAL experiment at LEP. Pions and kaons have been identified by specific ionisation energy loss andK±π∓ andK+K− mass spectra have been fitted, in bins of the scaled momentum variablexp, to combinations of resonance signals and non-resonant backgrounds. Rates are given forK*(892)° and ø(1020), and production cross sections are compared to the predictions of Monte Carlo models. Overall multiplicities have been determined as 0.76±0.07±0.06K*(892)° and 0.086±0.015±0.010 ø(1020) per hadronicZ0 decay (the quoted errors are respectively statistical and systematic). Momentum dependent distortions of the ππ mass spectra, possibly associated indirectly with Bose-Einstein effects, have prevented reliable measurement of the ρ(770)° cross section in this study.
No description provided.
No description provided.
No description provided.
We present a measurement of the forward-backward charge asymmetry in hadronic decays of the Z 0 using data collected with the OPAL detector at LEP. The forward-backward charge asymmetry was measured using a weight function method which gave the number of forward events on a statistical basis. In a data sample of 448 942 hadronic Z 0 decays, we have observed a charge asymmetry of A h = 0.040±0.004 (stat.)±0.006 (syst.)±0.002 (B 0 B 0 mix.), taking into account the effect of B 0 B 0 mixing. In the framework of the standard model, this asymmetry corresponds to an effective weak mixing angle averaged over five quark flavours of sin 2 θ W = 0.2321 ± 0.0017 ( stat. ) ± 0.0027 ( syst. ) ± 0.0009 (B 0 B 0 mix.). The result agrees with the value obtained from the Z 0 line shape and lepton pair forward-backward asymmetry.
No description provided.
The second systematic error is due to the uncertainty in the correction for B.BBAR mixing which had been applied to the data.
The second systematic error is due to the uncertainty in the correction for B.BBAR mixing which had been applied to the data.