A study of strange particle production in muon neutrino charged current interactions has been performed using the data from the NOMAD experiment. Yields of neutral strange particles K0s, Lambda, AntiLambda have been measured. Mean multiplicities are reported as a function of the event kinematic variables Enu, W2 and Q2 as well as of the variables describing particle behaviour within a hadronic jet: xF, z and pT2. Decays of resonances and heavy hyperons with identified K0s and Lambda in the final state have been analyzed. Clear signals corresponding to K*+-, Sigma*+-, Xi- and Sigma0 have been observed.
Measured yields of the neutral strange particles measured in this analysis.The second line (marked *) is a recalculation taking into account contributions from both primary and secondary V0. The values for K0 are the K0S rates multipl ied by 2.
Measured yields as a function of E, the neutrino energy.
Measured yields as a function of W**2.
A search was made among ν μ charged current events collected in the NOMAD experiment for the reaction: ν μ +N→μ − +D ★+ + hadrons ↪ D 0 +π + ↪ K − +π + . A high purity D ★+ sample composed of 35 events was extracted. The D ★+ yield in ν μ charged current interactions was measured to be T =(0.79±0.17(stat.)±0.10(syst.))%. The mean fraction of the hadronic jet energy taken by the D ★+ is 0.67±0.02(stat.)±0.02(syst.). The distributions of the fragmentation variables z, P T 2 and x F for D ★+ are also presented.
Distribution in Feynman X.
Distribution in transverse momentum.
Distribution in fractional energy Z.
The reactions ee->ee+pi0+X and ee->ee+K0s+X are studied using data collected at LEP with the L3 detector at centre-of-mass energies between 189 and 202 GeV. Inclusive differential cross sections are measured as a function of the particle transverse momentum pt and the pseudo-rapidity. For pt < 1.5 GeV, the pi0 and K0s differential cross sections are described by an exponential, typical of soft hadronic processes. For pt > 1.5 GeV, the cross sections show the presence of perturbative QCD processes, described by a power-law. The data are compared to Monte Carlo predictions and to NLO QCD calculations.
The PI0 differential cross section as a function of PT.
The PI0 differential cross section as a function of pseudorapidity.
The K0S differential cross section as a function of PT.
We present a measurement of the polarization of Antilambda hyperons produced in nu_mu charged current interactions. The full data sample from the NOMAD experiment has been analyzed using the same V0 identification procedure and analysis method reported in a previous paper for the case of Lambda hyperons. The Antilambda polarization has been measured for the first time in a neutrino experiment. The polarization vector is found to be compatible with zero.
Lambdabar polarization in regions of Feynman X (XL).
Lambdabar polarization in regions of the Bjorken scaling variable X.
We have measured the charge asymmetry in like-sign dilepton yields from B^0 B^0-bar meson decays using the CLEO detector at the Cornell Electron Storage Ring. We find a_ll = [N(l+l+) - N(l-l-)]/[N(l+l+) + N[l-l-)] = +0.013 +/- 0.050 +/- 0.005 . We combine this result with a previous, independent measurement and obtain Re(epsilon_B)/(1+|epsilon_B|^2) = +0.0035 +/- 0.0103 +/- 0.0015 (uncertainties are statistical and systematic, respectively) for the CP impurity parameter, epsilon_B.
CONST(NAME=EPSILON) is CP impurity parameter.
Open charm production in gamma-gamma collisions is studied with data collected at e+e- centre-of-mass energies from 189 GeV to 202 GeV corresponding to a total integrated luminosity of 410 pb-1. The charm cross section sigma(gamma gamma ---> c c~ X) is measured for the first time as a function of the two-photon centre-of-mass energy in the interval from 5 GeV to 70 GeV and is compared to NLO QCD calculations.
The total cross section for the process E+ E- --> E+ E- CQ CQBAR X.
The total cross section for the process GAMMA GAMMA --> CQ CQBAR X.
Correlation matrix of the data after unfolding.
The production of c and b quarks in gamma-gamma collisions is studied with the L3 detector at LEP with 410 pb^-1 of data, collected at centre-of-mass energies from 189 GeV to 202 GeV. Hadronic final states containing c and b quarks are identified by detecting electrons or muons from their semileptonic decays. The cross sections sigma(e+e- -> e+e- c c~ X) and sigma(e+e- -> e+e- b b~ X) are measured and compared to next-to-leading order perturbative QCD calculations. The cross section of b production is measured in gamma-gamma collisions for the first time. It is in excess of the QCD prediction by a factor of three.
Total cross section for charm production.
Total cross section for beauty production.
We present the first measurement of pseudorapidity densities of primary charged particles near mid-rapidity in Au+Au collisions at $\sqrt{s} =$ 56 and 130 AGeV. For the most central collisions, we find the charged particle pseudorapidity density to be $dN/d\eta |_{|\eta|<1} = 408 \pm 12 {(stat)} \pm 30 {(syst)}$ at 56 AGeV and $555 \pm 12 {(stat)} \pm 35 {(syst)}$ at 130 AGeV, values that are higher than any previously observed in nuclear collisions. Compared to proton-antiproton collisions, our data show an increase in the pseudorapidity density per participant by more than 40% at the higher energy.
No description provided.
The photon structure function F2-gamma(x,Q**2) has been measured using data taken by the OPAL detector at centre-of-mass energies of 91Gev, 183Gev and 189Gev, in Q**2 ranges of 1.5 to 30.0 GeV**2 (LEP1), and 7.0 to 30.0 GeV**2 (LEP2), probing lower values of x than ever before. Since previous OPAL analyses, new Monte Carlo models and new methods, such as multi-variable unfolding, have been introduced, reducing significantly the model dependent systematic errors in the measurement.
Results of F2/ALPHAE for the LEP1 data using the SW for Q**2 = 1.9 GeV**2.
Results of F2/ALPHAE for the LEP1 data using the SW for Q**2 = 3.7 GeV**2.
Results of F2/ALPHAE for the LEP1 data using the FD for Q**2 = 8.9 GeV**2.
We compared the multiplicities of pizero, eta, Kzero and of charged particles in quark and gluon jets in 3-jet events, as measured by the OPAL experiment at LEP. The comparisons were performed for distributions unfolded to 100% pure quark and gluon jets, at an effective scale Qjet which took into account topological dependences of the 3-jet environment. The ratio of particle multiplicity in gluon jets to that in quark jets as a function of Qjet for pizero, eta and Kzero was found to be independent of the particle species. This is consistent with the QCD prediction that the observed enhancement in the mean particle rate in gluon jets with respect to quark jets should be independent of particle species. In contrast to some theoretical predictions and previous observations, we observed no evidence for an enhancement of eta meson production in gluon jets with respect to quark jets, beyond that observed for charged particles. We measured the ratio of the slope of the average charged particle multiplicity in gluon jets to that in quark jets, C, and we compared it to a next-to-next-to-next-to leading order calculation. Our result, C=2.27+-0.20(stat+syst),is about one standard deviation higher than the perturbative prediction.
No description provided.
Symmetric on energy jets.
No description provided.