We have measured the cross section, the distribution of scattering angles, and the distribution of noncoplanarity angles for electron-positron elastic scattering at 5 GeV c. m. energy. An analysis based on 230 events with scattering angles between 50 and 130° yields a ratio of the experimental to theoretical quantum-electrodynamic cross section of 1.03 ± 0.09. The scattering-angle and noncoplanarity-angle distributions are also found to be in excellent agreement with the quantum-electrodynamic predictions.
No description provided.
We have measured the total cross section for electron-positron annihilation into three or more hadrons, with at least two charged particles in the final state. The measurement was made at a center-of-mass energy of 4 GeV with a 2π−sr nonmagnetic detector. With 88 events detected, we obtain a model-independent lower limit on the hadron production cross section of 9.6 ± 1.4 nb; a calculation of detection efficiency based on invariant phase-space production of pions leads to a total cross section of 26 ± 6 nb. This cross section is 4.7 ± 1.1 times the theoretical total cross section for e+e−→μ+μ−. The average charged multiplicity is n¯=4.2±0.6.
No description provided.